

Developers - Vault Vision[#1]

Vault Vision[#2] is a user authentication and login management platform whose passwordless technology is powered by authentication software and devices enables easier authentication system integration for startup developers, IT security teams and seamless security for end users.

Note

If you have any issues and need support here are the following channels:

	Discord[#3]

	Email: support@vaultvision.com

Guides

	Quick Start
	Create an Account at Vault Vision

	Try out your development sandbox

	Run your own example application locally
	Get your configuration values

	Run the Go auth example

	Run the Node auth example

	Run the Python auth example

	Run the React js boilerplate example

	Run the HTML boilerplate example

	Testing your local example

Introduction

	Tenants
	Properties

	Actions

	Applications
	Properties

	Actions

	Users
	Properties

	Actions

	Concepts and Diagrams
	Typical OIDC Application to Authentication Provider Flow Strategy and Diagrams
	Login Flow Diagram

	Step 1

	Step 2

	Reference
	Typical OIDC Application to User Auth Provider Flow Diagrams

	Step 1

	Step 2

Migrating

	Express Migration
	Step 1

	Step 2 - Create an Account at Vault Vision

	Step 3 - Update the application to use the determined URLs

	Step 4 add the OIDC open source client library

	Step 5 copy the environment variables

	Step 6 create a OIDC client using the open source library

	Step 7 create a login route

	Step 8 create a logout route

	Step 9 create a callback route

	Step 10 import users, and assign a new forigen key

	Step 11 update any session creation and tear down

API

	Overview
	Overview
	Authentication

	Metadata

	Errors

	Update/Create Conventions

	Paths
	GET /v1/tenants

	GET /v1/tenants/:tenant_id

	POST /v1/tenants/:tenant_id

	POST /v1/tenants/:tenant_id/applications

	GET /v1/tenants/:tenant_id/applications

	GET /v1/tenants/:tenant_id/applications/:application_id

	POST /v1/tenants/:tenant_id/applications/:application_id

	DELETE /v1/tenants/:tenant_id/applications/:application_id

	POST /v1/tenants/:tenant_id/users

	GET /v1/tenants/:tenant_id/users

	GET /v1/tenants/:tenant_id/users/:user_id

	POST /v1/tenants/:tenant_id/users/:user_id

	DELETE /v1/tenants/:tenant_id/users/:user_id

	GET /v1/tenants/:tenant_id/users/:user_id/credentials

	POST /v1/tenants/:tenant_id/users/:user_id/credentials

	GET /v1/tenants/:tenant_id/users/:user_id/credentials/:credential_id

	POST /v1/tenants/:tenant_id/users/:user_id/credentials/:credential_id

	DELETE /v1/tenants/:tenant_id/users/:user_id/credentials/:credential_id

	Examples
	Example - Changing a Tenant Setting (JQ)

	Example - Changing a Tenant Setting (Manual)

	Example - Metadata

	Example - Disable a user

	Example - Enable a user

	API Keys
	Overview
	Privileges

	Guide - Creating Global API Keys
	Step 1 - Login to Management Console

	Step 2 - Create API Key

	Step 3 - Review Settings

	Step 4 - Restrict Privileges (OPTIONAL)

Advanced Features

	Custom Domains
	Step 1

	Step 2

	Step 3

	Custom Identity Providers
	What is an Identity Provider?

	Options

	How to register as an application with Google

	Custom Branding Designer
	With our custom branding designer you will be able to set a custom image for your authentication pages
	Custom Image Example

	Image requirements

	Custom Branding Designer Management Page

	NoCode HTML and JS AirTable Toolkit
	With our NoCode HTML and JS Toolkit you will be

	ID tokens, Access tokens, UserInfo
	ID Tokens
	ID Token Example

	Access Tokens
	Access Token Example

	UserInfo
	UserInfo Example

Community

	GitHub[#4]

	Contact Us[#5]

Footnotes

[#1]
https://vaultvision.com

[#2]
https://vaultvision.com

[#3]
https://discord.gg/VcSdzmN2dX

[#4]
https://github.com/vaultvision

[#5]
https://vaultvision.com/contact-us/

Quick Start - Vault Vision[#1]

This Vault Vision setup guide will get your user authentication and login management system up and running in less than a minute.

Create an Account at Vault Vision

Navigate to Register[#2] and create an account.

Try out your development sandbox

Each Vault Vision account is provisioned a development sandbox Tenant during registration. You will see the image below right after you signup or you can access it again by just visiting the Management Panel[#3]:

[image: vv-manage-popin-sandbox.png]

Click the “Open Sandbox in a New Window” button to load the example application running on our servers:

[image: vv-sandbox.png]

Click signup to create your first User. You can then test logging out or updating your settings:

[image: vv-sandbox-logged-in.png]

Feel free to explore the other options in the sandbox before moving on:

[image: vv-sandbox-options.png]

Run your own example application locally

We provide example auth applications written in Node, Go and Python with more to come.

Note

Our system is built on open protocols that support every programming language. Get in touch[#4] with us if you would like support integrating with a programming language we don’t currently provide an example for.

Get your configuration values

Access the development sandbox popin again by visiting the Management Panel[#5] and click the “Display .env file” button to get your configuration values for our open source example projects. Download or copy it locally into a file named .env, we will use it in the examples we configure next:

[image: Sandbox]

Run the Go auth example[#6]

Get the source code from the go-auth-example[#7] repository:

git clone https://github.com/vaultvision/go-auth-example
cd go-auth-example

Configure the app by placing the .env file we obtained previously into the root of the repo folder:

vi .env

Run the example on localhost:

go run main.go

Visit http://localhost:8090 in your browser.

Run the Node auth example[#8]

Get the source code from the node-auth-example[#9] repository:

git clone https://github.com/vaultvision/node-auth-example
cd node-auth-example

Configure the app by placing the .env file we obtained previously into the root of the repo folder:

vi .env

Install dependencies:

npm install

Run the example on localhost:

npm run dev

Visit http://localhost:8090 in your browser.

Run the Python auth example[#10]

Get the source code from the python-auth-example[#11] repository:

git clone https://github.com/vaultvision/python-auth-example
cd python-auth-example

Configure the app by placing the .env file we obtained previously into the root of the repo folder:

vi .env

Install dependencies:

python -m venv .venv # Or python3 for some systems
.venv/bin/pip install --upgrade pip
.venv/bin/pip install -r requirements.txt

Run the example on localhost:

.venv/bin/python app.py

Visit http://localhost:8090 in your browser.

Run the React js boilerplate example[#12]

Note

Prefer to watch a video?

React application user authentication setup[#13]

	clone this github repo containing our React js boilerplate project https://github.com/vaultvision/react-boilerplate-vv

	Copy over the env vars from the Vault Vision Management Panel[#14] into a NEW .env file located at the root of the project. You can copy this file as an example https://github.com/vaultvision/react-boilerplate-vv/blob/master/.env-example , or simply rename it .env and populate it with your correct env vars.

	Run the npm start command to launch a local instance

npm run start

Run the HTML boilerplate example[#15]

	clone this github repo containing our HTML boilerplate project https://github.com/vaultvision/html-boilerplate

	Copy over the env vars from the Vault Vision Management Panel[#16] into one of these files: https://github.com/vaultvision/html-boilerplate/blob/main/src/scripts-init/oidcAppRouter.js or https://github.com/vaultvision/html-boilerplate/blob/main/src/scripts-init/oidcbinding.js

	Run the npm start command to launch a local instance

npm run start

Testing your local example

With your local example running you can now see how you can use the same credentials to login to multiple applications hosted on different domains written in entirely different programming languages. Feel free to explore multiple programming languages using the same .env file.

Footnotes

[#1]
https://vaultvision.com

[#2]
https://manage.vaultvision.com/register

[#3]
https://manage.vaultvision.com

[#4]
https://vaultvision.com/contact-us/

[#5]
https://manage.vaultvision.com

[#6]
https://github.com/vaultvision/go-auth-example

[#7]
https://github.com/vaultvision/go-auth-example

[#8]
https://github.com/vaultvision/node-auth-example

[#9]
https://github.com/vaultvision/node-auth-example

[#10]
https://github.com/vaultvision/python-auth-example

[#11]
https://github.com/vaultvision/python-auth-example

[#12]
https://github.com/vaultvision/react-boilerplate-vv

[#13]
https://www.youtube.com/watch?v=K7It1YuXyBc

[#14]
https://manage.vaultvision.com/go#applications

[#15]
https://github.com/vaultvision/html-boilerplate

[#16]
https://manage.vaultvision.com/go#applications

Tenants - Vault Vision[#1]

Tenants are the center hub of Vault Vision’s[#2] user authentication platform. It is the core entity that holds all your users, application links, and unique branding and authentication settings.

Properties

Domain - This is the domain for your auth platform, this is where your signup and login pages will live. This is what will show in the users address bar when signing up or logging in to your services. Once set, this can not be changed without contacting support. This is because your users are familiar with where they signed up, and any changes need to be communicated and coordinated with them so that they understand where and how they are authenticating for your service.

Note

Custom Domains
If you choose a custom domain for your tenant, something like auth.mycompany.com, then you will need to make sure you create a DNS CNAME record for that custom domain (auth.mycompany.com in this example) to point to nextgenauth.vaultvision.com

This is how you will connect your custom domain to our services

Company Name - This is usually just your company name. It is the name that you can use to identify yourself to end users. We will default to this name when sending system messages and emails.

Support Email - This is the email address we will show to your end users so they can reach out for support if needed. Usually displayed in either system messages or if an error condition arises.

Support URL - This is the website URL we will show to your end users so they can reach out for support if needed. Usually displayed in either system messages or if an error condition arises. Additionally, this is where we will send end users that need more help during signup or login.

Terms of Service URL - This is the link to your terms of service for your web application. We show this link on your signup page and require that your end users agree to it during signup.

Terms of Service Version - This is the version of your terms of service that we record when a users signs up for your service. At signup, after they agree to the terms of service, we will record which version of the terms they agreed to based on what is currently set in this field for your tenant. When you update your terms of service you should update this version number as well so that we will maintain accurate records of what version users agreed to when they signed up.

Privacy Policy URL - This is the link to your privacy policy for your company. We show this link on your signup page and require that your end users agree to it during signup.

Privacy Policy Version - This is the version of your privacy policy that we record when a users signs up for your service. At signup, after they agree to the privacy policy, we will record which version of the policy they agreed to based on what is currently set in this field for your tenant. When you update your privacy policy you should update this version number as well so that we will maintain accurate records of what version users agreed to when they signed up.

Email Verification Delay (seconds) - If you have email verification disabled for users, you can use this setting to add a verification delay. This delay happens after a user signs up. This delay is useful for reducing the initial friction when a user signs-ups. By disabling email verification AND setting this delay value, your new user sign-ups won’t be required to verify their email until then next time they login after the delay duration has passed. A typical use case is to set this to 60 seconds so that the first time a user signs-up, they won’t be blocked with a requirement to verify their email, yet on any logins that happen after 60 seconds later will block the user from completing sign-in until they have verified their email by entering the code sent to them. Setting this value to 0 will completely remove all email verification requirements. If you never want to verify your user’s email, set this to 0.

Login Session Persistence Lifetime (seconds) - This is the duration of the users login session. This controls the lifetime and expiration time of the login cookie. While this lifetime is active and the user’s browser has an un-expired login cookie, the user will be authenticated and will not be prompted to login, they will redirected back to the application with the new valid login tokens. When this lifetime expires, any new authentication requests will prompt the user to login again. Setting this value will make the browser remember the users login session even if they close and re-open the browser. Setting this to 0 will make the users login session not be remembered after they close the browser. Setting this to 0 will make the login cookie a session cookie that will disappear when the browser is closed. Login sessions are always destroyed on logout.

MFA/TOTP Session Persistence Lifetime (seconds) - This is the duration of the user’s MFA/TOTP remembered session. When a users enters their TOTP code in their MFA login flow, if they choose to ‘Remember Me’, their 2nd factor will be remembered on their device for this duration. This means that the next time the users authenticates, if the MFA/TOTP is still active, they will not be prompted for their MFA/TOTP code again. A typical use case for this setting is to combine it with a shorter ‘Login Session Persistence Lifetime’ so you get the benefit of frequent re-authentications, yet only prompt for the MFA/TOTP on a new device or after a very long time. Typical values would be 30 days for an ‘MFA/TOTP Session Persistence Lifetime’ and only 24 hours for ‘Login Session Persistence Lifetime (seconds)’. This way users authenticate each day, but only have to enter their MFA/TOTP code once a month. MFA/TOTP sessions are always destroyed on logout.

Allow Password Logins - This is setting determines whether users will be able to authenticate using a password. Disabling this will mean users can no longer use a password to login, they will need to use either social logins, or passkey/security keys.

Allow Social Logins - This is setting determines whether users will be able to authenticate using social logins like Google, Apple, Microsoft. Disabling this will mean users can no longer use a social login, they will need to use either password, or passkey/security keys.

Allow Security Key Logins - This is setting determines whether users will be able to authenticate using WebAuthn/FIDO authenticators, including passkey. Disabling this will mean users can no longer use passkey or security keys to login, they will need to use either password, or social logins.

Allow TOTP Authenticator Apps - This is setting determines whether users are able to add a TOTP authenticator app as a 2nd factor to their password. Disabling this will block users from adding a TOTP authenticator app, and could break logins for users that had already added one to their account.

Allow TOTP via Email Code - This is setting determines whether users are able to use email to get a TOTP code as a 2nd factor to their password. Disabling this will block users from using their email as a method to receive a TOTP code.

Disable Email Verification for Users - This is setting determines whether users are required to verify their email address after signing up and logging in. If you ‘Disable Email Verification’, users will be able to signup and login without being blocked to enter a code that is sent to their email address. This verification can also be delayed by setting a delay in the ‘Email Verification Delay’ setting. If you never want to a user to be required to verify their email, check this ‘Disable Email Verification’ setting and set ‘Email Verification Delay’ to 0.

Require Multi-Factor Authentication (MFA) - This is setting determines whether users are required to use MFA/TOTP codes with their passwords. When required, users on signup and login will be required to enter a TOTP code either from a TOTP authenticator app (if allowed by the setting above) or from a email (if allowed by the setting above) sent to their email address. This setting only requires a TOTP code for password logins. This setting has no impact on social and passkey/security keys, those login types do not use TOTP MFA (this will be an option soon though.)

Developer Mode - This is setting determines whether helpful debug messages are shown on your auth tenant. Enabling this will give helpful tips on setting the proper callback urls for your application and solving other mis-configurations. Typically, you will only want to enable this during setup or troubleshooting, as it will show debug messages that will only make sense to you and not to your users.

Allow Public Signups - This is setting determines whether users can register themselves. When enabled, users will be able to create their own accounts using the registration signup page. When disabled, the registration signup page does not exist, and only tenant admins will be able to create new user accounts. This is typically used for systems that are internal to a company or is for employee’s only and NOT for the general public.

Require New Users to be Approved by Admin - This is setting determines whether new users are automatically disabled/blocked on creation. This is useful if you want users to self-register but not gain access until they are approved by the tenant admin.

Logo - This is the image that will be displayed on your signup and login pages. It will also be used in emails and system messages.

Actions

None currently

Footnotes

[#1]
https://vaultvision.com

[#2]
https://vaultvision.com

Applications - Vault Vision[#1]

Note

OAuth Client
An Application in our Vault Vision parlance is synonymous with an OAuth Client. Our Vault Vision service provides the OAuth identity authentication for your OAuth Client Applications.

Properties

Application Name - This name that will refer to the application you are configuring to be linked to your tenant. It is only for management purposes and is never displayed to an end user.

Callback URLs - At the initiation of the user authentication process, your service will redirect a user to our login page with a special callback redirect uri that you specify in the querystring of that 302 redirect. After our auth platform authenticates that user, we check if the callback redirect uri that was specified in the querystring matches a Callback URL set here in the Application setting screen. If there is a match, then our auth platform will call the specified callback redirect uri and it will pass the OAuth token. On the service handler for this callback, that is hosted on your system, you will validate that OAuth token using our token endpoint and a signed JWT with the users idenity embedded in it will be generated and returned. This JWT can then be used to further authenticate the user in additional service calls. Usually this URL is located as something like: https://yoursite.com/auth/callback

Login URL - This this the URL that our auth platform will redirect unauthenticated users to so that a new user authentication process can be initiated by your application. The handler for this URL should generate a redirect to our authorize endpoint (‘/authorize’) on your tenant domain hosted on our systems. As part of that redirect, the Application client_id and callback redirect uri need to be included in the query string. Usually this URL is located as something like: https://yoursite.com/login

Logout URLs - At the initiation of the user logout process, your service will redirect a user to our logout handler with a special callback redirect uri that you specify in the querystring of that 302 redirect. After our auth platform ends all the sessions for that user, we check if the callback redirect uri that was specified in the querystring matches a Logout URL set here in the Application setting screen. If there is a match, then our auth platform will call the specified callback redirect uri so that your application can finish any remaining session closures if needed. In most cases, applications will usually remove any user sessions prior to initiating a user logout process, and in those cases, this Logout URL can simply be the home page, or whatever page you want to drop off newly logged out users. Usually this URL is located as something like: https://yoursite.com/loggedout

Actions

Edit - Using this action you can view or changes the URL and Name properties for your application.

Delete - This action will delete the Application and it will no longer be able to authorize or validate OAuth tokens or JWTs.

Footnotes

[#1]
https://vaultvision.com

Users - Vault Vision[#1]

Properties

Name - This name that will refer to the user in this tenant. It does not have to be unique and will be used for system and email messages to the User.

Email - This is the email address for the user, and must be unique inside each tenant. There can not be two users in the same tenant using the same email, it is akin to a username, and is the unique identifier for a user account.

Password - This is the password credential users provide to authenticate themselves. Setting this Password field for a user that currently has a FIDO security key credential assigned as the account credential, will cause that FIDO security key credential to be removed from the user account and it will be replaced by the password set in this field.

Actions

Update - The user’s name can be updated

Block/Unblock - Blocking a use will cause them to be blocked from authenticating, meaning they won’t be able to login anymore. This can be undone by Unblocking the user.

Delete - This will remove the user from the tentant, they will no longer be able to login and if they re-register, they will have a different id and user account.

Footnotes

[#1]
https://vaultvision.com

User Authentication Concepts - Vault Vision[#1]

Typical OIDC Application to Authentication Provider Flow Strategy and Diagrams

When implementing an OIDC Application to integrate with an Auth Provider, there are the following six implementation flows to consider. Two flows each for: signup, login, logout

	User starting a signup from the Application

	User starting a login from the Application

	User starting a logout from the Application

	Auth Provider redirecting the user back to the Application with the OIDC authentication payload after a successful signup or login

	Auth Provider redirecting the user back to the Application after a successful logout

	Auth Provider redirecting the user back to the Application when the Auth Provider did not receive the proper login request. The Auth Provider needs to know a URL on the Application where the user can see a login button and can restart a user login request

Login Flow Diagram

[image: Login Flow]

Step 1

Decide the URL locations for these 3 endpoints on your website:

	callback (route location on your website where our services will redirect authenticated users to with an OAuth token)

	Usually something like: https://yoursite.com/callback

	login (route location on your website where we will redirect unauthenticated users to so that you can redirect them back with the proper login intitation request paramters, like your client_id and callback URL)

	Usually something like: https://yoursite.com/login

	This is not required, but without it we don’t know where to send a user if they bookmarked our page or followed a link to the login that did not come from your login redirect.

	logout (route location on your website where we will redirect users to AFTER they have logged out and we have removed their session)

Step 2

Update the URL values in the Vault Vision Management Panel[#2] for your application.

Footnotes

[#1]
https://vaultvision.com

[#2]
https://manage.vaultvision.com/go#applications

Reference - Vault Vision[#1]

Typical OIDC Application to User Auth Provider Flow Diagrams

When implementing an OIDC Application to integrate with an Auth Provider, there are the following 6 flows to consider. 2 flows each for: signup, login, logout

	User starting a signup from the Application

	User starting a login from the Application

	User starting a logout from the Application

	Auth Provider redirecting the user back to the Application with the OIDC authentication payload after a successful signup or login

	Auth Provider redirecting the user back to the Application after a successful logout

	Auth Provider redirecting the user back to the Application when the Auth Provider did not receive the proper login request. The Auth Provider needs to know a URL on the Application where the user can see a login button and can restart a user login request

Step 1

Decide the URL locations for these 3 endpoints on your website:

	callback (route location on your website where our services will redirect authenticated users to with an OAuth token)

	Usually something like: https://yoursite.com/callback

	login (route location on your website where we will redirect unauthenticated users to so that you can redirect them back with the proper login intitation request paramters, like your client_id and callback URL)

	Usually something like: https://yoursite.com/login

	This is not required, but without it we don’t know where to send a user if they bookmarked our page or followed a link to the login that did not come from your login redirect.

	logout (route location on your website where we will redirect users to AFTER they have logged out and we have removed their session)

Step 2

Update the URL values in the Vault Vision Management Panel[#2] for your application.

Footnotes

[#1]
https://vaultvision.com

[#2]
https://manage.vaultvision.com/go#applications

Express Migration Steps - Vault Vision[#1]

Step 1

Determine the 3 routes that will be used to:

	Start a login (usually something like /login)

	Start a logout (usually something like /logout)

	Receive the user after a successful signup or login (usually something like /oidc/auth_callback)

Step 2 - Create an Account at Vault Vision

Create an account at this Register location. Register[#2]

Configure the Vault Vision tenant and application. Navigate to Getting Started[#3]

Step 3 - Update the application to use the determined URLs

Update the URL values in the (Vault Vision Management Panel)[https://manage.vaultvision.com/go#applications] for your application.

Step 4 add the OIDC open source client library

npm install openid-client

Step 5 copy the environment variables

Copy over the env vars from the (Vault Vision Management Panel)[https://manage.vaultvision.com/go#applications] into your react application, something like:

const appHostUrl = process.env.APP_HOST_URL;
const tenantFqdn = process.env.TENANT_FQDN;
const post_authorize_redirect = process.env.POST_AUTHORIZE_CALLBACK; //configure this in authorized web app redirect uris
const post_logout_callback = process.env.POST_LOGOUT_CALLBACK;
const tenantUrl = "https://" + tenantFqdn;
const redirect_uri = appHostUrl + post_authorize_redirect;
const post_logout_redirectUrl = [appHostUrl + post_logout_callback];
const client_id = process.env.CLIENT_ID;
const client_secret = process.env.CLIENT_SECRET;

Step 6 create a OIDC client using the open source library

Issuer.discover(tenantUrl).then((vaultVisionIssuer) => {
 console.log('Discovered issuer %s %O', vaultVisionIssuer.issuer, vaultVisionIssuer.metadata);

 client = new vaultVisionIssuer.Client({
 client_id: client_id,
 client_secret: client_secret,
 redirect_uris: [redirect_uri],
 response_types: ['code'],
 // id_token_signed_response_alg (default "RS256")
 // token_endpoint_auth_method (default "client_secret_basic")
 });

});

Step 7 create a login route

Something similar to

// create the login get and post routes
app.get('/login', (req, res) => {
 console.log('Inside GET /login callback function')
 console.log(req.sessionID)

 const nonce = generators.nonce();
 const state = generators.state();
 const code_verifier = generators.codeVerifier();
 req.session.code_verifier = code_verifier
 req.session.nonce = nonce
 req.session.state = state

 const code_challenge = generators.codeChallenge(code_verifier);

 let redirectURL = client.authorizationUrl({
 scope: 'openid email profile',
 resource: redirect_uri,
 code_challenge,
 code_challenge_method: 'S256',
 nonce: nonce,
 state: state,
 });
 console.log("redirctURL: " + redirectURL)
 res.redirect(redirectURL)
})

Step 8 create a logout route

app.get('/logout', (req, res) => {
 res.clearCookie("jwt");
 res.redirect('/');
})

Step 9 create a callback route

app.all(post_authorize_redirect, (req, res) => {
 console.log('Inside GET /postauthorize callback function')
 console.log("request session id: " + req.sessionID)
 const params = client.callbackParams(req);
 console.log(params);
 client.callback(
 redirect_uri,
 params,
 {
 code_verifier: req.session.code_verifier,
 state: req.session.state,
 nonce: req.session.nonce,
 }
)
 .then((tokenSet) => {
 req.session.sessionTokens = tokenSet;
 req.session.claims = tokenSet.claims();
 console.log('received and validated tokens %j', tokenSet);
 console.log("-------")
 console.log('validated ID Token claims %j', tokenSet.claims());

 if (tokenSet.access_token) {
 client.userinfo(tokenSet.access_token)
 .then((userinfo) => {
 req.session.userinfo = userinfo
 userLookup[userinfo.sub] = userinfo.name
 console.log("userinfo")
 console.log(userinfo)
 })
 }

 res.cookie("jwt", JSON.stringify(tokenSet.id_token), {
 secure: false,
 httpOnly: true,
 expires: 0
 });
 res.redirect("/room.html");

 })

})

Step 10 import users, and assign a new forigen key

Once users are imported into the Vault Vision tenant, take the returned table of users with the new assign Vault Vision subscriberId and attach that as a forigen key into your user table.

Step 11 update any session creation and tear down

New user sessions should be created in the oidc callback, and destroyed in the start logout route.

Footnotes

[#1]
https://vaultvision.com

[#2]
https://manage.vaultvision.com/register

[#3]
https://manage.vaultvision.com/start

API Reference - Vault Vision[#1]

Overview

Vault Vision[#2] provides all customers access to
a REST[#3] based
API. A quick summary:

	Request bodies are JSON-encoded[#4]

	Responses are also JSON-encoded[#5]

	Uses standard HTTP response codes (200, 400, …)

	Uses standard HTTP verbs (GET, POST, …)

	Authentication via API Keys (Authorization: Bearer $VV_API_KEY)

	The production endpoint is: https://api.vaultvision.com

Our goal is to provide comprehensive documentation. We will gladly accept pull requests at github.com/vaultvision/docs[#6] or feel free to contact us[#7] directly with feedback / questions.

Authentication

All requests to the API must be authenticated with a secret API Key. You may create and manage your API Keys in the management console[#8], see our API Key creation guide here.

Secret API Keys have a prefix of "vv_" so they may be identified easily. Beyond that all characters are random, some examples:

	vv_oFVTAiPkICpOewyuV2mINX1rSFxzdIkR

	vv_uAmkBd4nRsjFPBfsJFrmvNmKOMARrapZ

Note

Your secret API Keys must be kept secure, do not share your secret API keys in publicly accessible areas.

Secret keys are provided in the HTTP Authorization header as a bearer token. For example:

curl \
 https://api.vaultvision.com/v1/tenants \
 -X GET \
 -H "accept: application/json" \
 -H "authorization: Bearer vv_oFVTAiPkICpOewyuV2mINX1rSFxzdIkR"

Metadata

Most updatable API objects have a metadata field you may use for storing arbitrary key-value data. You can use this field for storing additional information directly on an object. For example you could store your systems own unique ID’s for a given user on the User object to lookup after they login.

You can specify up to 20 keys, with key names up to 100 characters long and values up to 1000 characters long. Your users won’t see metadata unless you show it to them.

Note

Don’t store any sensitive information in metadata.

Errors

Vault Vision uses conventional HTTP response status codes to indicate the success or failure of an API request:

	2xx range indicate success.

	4xx range indicate an error with the request.

	5xx range indicate an error with the tenants configuration or in rare circumstances our infrastructure.

When a failure occurs we always return JSON objects containing additional information about errors. These errors include a string “code” and a “uuid” you can supply our support with so we can lookup additional details about your request. An example error for authentication failure:

{
 "type": "Error",
 "uuid": "a31680a3-663e-4693-9152-e2cc9a093811",
 "code": "authentication_failure",
 "status_code": 401
}

Update/Create Conventions

For updates and creates, we only support full object POST requests, meaning the entire object with all of it’s fields and properties needs to be included in the request. To update a single field you should first fetch the latest version of the object, modify it and post it back with all of it’s fields even if the fields are not changing. We ignore some system managed fields like the id, created_at and updated_at fields. See each Object for more information about mutability.

It’s also worth noting that many fields are omitted when they are the zero-value or false for that type. For example when a bool is false we often will omit that key from the response. This may change in a future release to give more consistent experience across integrations. Omitted values should be assumed to be zero-value or false.

Paths

The full list of request paths and API endpoints are organized below. The route parameters (tenant_id, user_id, etc…) are always required, the ID in the request body/payload is ignored. Only the id provided in the URL as a route parameter is used. Request paths which end with a single specific ID will return a single object, other requests paths that end without a single specific ID will return a list of objects.

Tenants:

	GET /v1/tenants

	GET /v1/tenants/:tenant_id

	POST /v1/tenants/:tenant_id

Applications:

	GET /v1/tenants/:tenant_id/applications

	POST /v1/tenants/:tenant_id/applications

	GET /v1/tenants/:tenant_id/applications/:application_id

	POST /v1/tenants/:tenant_id/applications/:application_id

	DELETE /v1/tenants/:tenant_id/applications/:application_id

Users:

	GET /v1/tenants/:tenant_id/users

	POST /v1/tenants/:tenant_id/users

	GET /v1/tenants/:tenant_id/users/:user_id

	POST /v1/tenants/:tenant_id/users/:user_id

	DELETE /v1/tenants/:tenant_id/users/:user_id

User Credentials:

	GET /v1/tenants/:tenant_id/users/:user_id/credentials

	POST /v1/tenants/:tenant_id/users/:user_id/credentials

	GET /v1/tenants/:tenant_id/users/:user_id/credentials/:credential_id

	POST /v1/tenants/:tenant_id/users/:user_id/credentials/:credential_id

	DELETE /v1/tenants/:tenant_id/users/:user_id/credentials/:credential_id

GET /v1/tenants

Returns the list of tenants the current API Key has access to.

Request:

curl \
 https://api.vaultvision.com/v1/tenants \
 -X GET \
 -H "accept: application/json" \
 -H "authorization: Bearer $VV_API_KEY"

Response:

{
 "type": "List",
 "total": 2,
 "count": 2,
 "limit": 100,
 "data": [
 {
 "type": "Tenant",
 "id": "i1JfrfWIwQiQ",
 "created_at": "2023-08-18T21:41:13.850608202Z",
 "updated_at": "2023-08-18T21:41:13.850608202Z",
 "settings": {
 "domain": "dev-xbwlrp.vvkey.test",
 "company_name": "Development Environment",
 "logo_image_text": "dev-xbwlrp",
 "allow_social": true,
 "allow_hardware": true,
 "allow_passwords": true,
 "allow_totp_app": true,
 "allow_totp_email": true,
 "allow_unverified": true,
 "remember_device": true,
 "remember_device_seconds": 2592000,
 "remember_login_seconds": 2592000,
 "allow_signups": true,
 "developer_mode": true
 }
 },
 {
 "type": "Tenant",
 "id": "CmKJPDorO34hGJ0J",
 "name": "acme01",
 "created_at": "2023-08-18T15:11:28.708085985Z",
 "updated_at": "2023-08-18T15:11:28.708085985Z",
 "settings": {
 "domain": "acme01.vvkey.test",
 "company_name": "acme01",
 "support_email": "support@acme01.test",
 "allow_social": true,
 "allow_hardware": true,
 "allow_passwords": true,
 "allow_totp_app": true,
 "allow_totp_email": true,
 "allow_unverified": true,
 "remember_device": true,
 "remember_device_seconds": 2592000,
 "remember_login_seconds": 2592000,
 "allow_signups": true
 }
 }
]
}

GET /v1/tenants/:tenant_id

Get a specific tenant by ID.

Request:

curl \
 https://api.vaultvision.com/v1/tenants/CmKJPDorO34hGJ0J \
 -X GET \
 -H "accept: application/json" \
 -H "authorization: Bearer $VV_API_KEY"

Response:

{
 "type": "Tenant",
 "id": "CmKJPDorO34hGJ0J",
 "name": "acme01",
 "created_at": "2023-08-18T15:11:28.708085985Z",
 "updated_at": "2023-08-18T15:11:28.708085985Z",
 "settings": {
 "domain": "acme01.vvkey.test",
 "company_name": "acme01",
 "support_email": "support@acme01.test",
 "allow_social": true,
 "allow_hardware": true,
 "allow_passwords": true,
 "allow_totp_app": true,
 "allow_totp_email": true,
 "allow_unverified": true,
 "remember_device": true,
 "remember_device_seconds": 2592000,
 "remember_login_seconds": 2592000,
 "allow_signups": true
 }
}

POST /v1/tenants/:tenant_id

Update the tenant specified by tenant_id.

Request:

curl \
 https://api.vaultvision.com/v1/tenants/CmKJPDorO34hGJ0J \
 -X GET \
 -H "accept: application/json" \
 -H "authorization: Bearer $VV_API_KEY" \
 | jq -r '. += {"metadata": {"mykey1":"myval1"}}' \
 | curl \
 https://api.vaultvision.com/v1/tenants/CmKJPDorO34hGJ0J \
 -X POST \
 -H "accept: application/json" \
 -H "authorization: Bearer $VV_API_KEY" \
 -d@-

Response:

{
 "type": "Tenant",
 "id": "CmKJPDorO34hGJ0J",
 "name": "acme01",
 "created_at": "2023-08-18T15:11:28.708085985Z",
 "updated_at": "2023-08-18T15:11:28.708085985Z",
 "metadata": {
 "mykey1": "myval1"
 },
 "settings": {
 "domain": "acme01.vvkey.test",
 "company_name": "acme01",
 "support_email": "support@acme01.test",
 "allow_social": true,
 "allow_hardware": true,
 "allow_passwords": true,
 "allow_totp_app": true,
 "allow_totp_email": true,
 "allow_unverified": true,
 "remember_device": true,
 "remember_device_seconds": 2592000,
 "remember_login_seconds": 2592000,
 "allow_signups": true
 }
}

POST /v1/tenants/:tenant_id/applications

Create a new application. An application is your OIDC client used to initiate and handle authentication callbacks.

Request:

echo '{
 "type": "Application",
 "name": "MyNewApp",
 "login_url": "https://example.test/auth/login",
 "logout_urls": [
 "https://example.test/auth/logout"
],
 "redirect_urls": [
 "https://example.test/auth/callback"
]
}' | curl \
 https://api.vaultvision.com/v1/tenants/CmKJPDorO34hGJ0J/applications \
 -X POST \
 -H "accept: application/json" \
 -H "authorization: Bearer $VV_API_KEY" \
 -d@-

Response:

{
 "type": "Application",
 "id": "37SenPbBds9q",
 "name": "MyNewApp",
 "created_at": "2023-08-18T23:08:56.256482702Z",
 "updated_at": "2023-08-18T23:08:56.256482702Z",
 "login_url": "https://example.test/auth/login",
 "logout_urls": [
 "https://example.test/auth/logout"
],
 "redirect_urls": [
 "https://example.test/auth/callback"
]
}

GET /v1/tenants/:tenant_id/applications

Request:

curl \
 https://api.vaultvision.com/v1/tenants/CmKJPDorO34hGJ0J/applications \
 -X GET \
 -H "accept: application/json" \
 -H "authorization: Bearer $VV_API_KEY"

Response:

{
 "type": "List",
 "total": 4,
 "count": 4,
 "limit": 100,
 "data": [
 {
 "type": "Application",
 "id": "J3Or5KNHIUDl",
 "name": "MyNewApp",
 "created_at": "2023-08-18T23:14:03.782059707Z",
 "updated_at": "2023-08-18T23:14:03.782059707Z",
 "secret": "4fZyeKjrJaBbFVeLzQy2TCsJ",
 "login_url": "https://example.test/auth/login",
 "logout_urls": [
 "https://example.test/auth/logout"
],
 "redirect_urls": [
 "https://example.test/auth/callback"
]
 }
]
}

GET /v1/tenants/:tenant_id/applications/:application_id

Request:

curl \
 https://api.vaultvision.com/v1/tenants/CmKJPDorO34hGJ0J/applications/J3Or5KNHIUDl \
 -X GET \
 -H "accept: application/json" \
 -H "authorization: Bearer $VV_API_KEY"

Response:

{
 "type": "Application",
 "id": "J3Or5KNHIUDl",
 "name": "MyNewApp",
 "created_at": "2023-08-18T23:14:03.782059707Z",
 "updated_at": "2023-08-18T23:14:03.782059707Z",
 "secret": "4fZyeKjrJaBbFVeLzQy2TCsJ",
 "login_url": "https://example.test/auth/login",
 "logout_urls": [
 "https://example.test/auth/logout"
],
 "redirect_urls": [
 "https://example.test/auth/callback"
]
}

POST /v1/tenants/:tenant_id/applications/:application_id

Request:

curl \
 https://api.vaultvision.com/v1/tenants/CmKJPDorO34hGJ0J/applications/J3Or5KNHIUDl \
 -X GET \
 -H "accept: application/json" \
 -H "authorization: Bearer $VV_API_KEY" \
 | jq -r '. += {"metadata": {"mykey1":"myval1"}}' \
 | curl \
 https://api.vaultvision.com/v1/tenants/CmKJPDorO34hGJ0J/applications/J3Or5KNHIUDl \
 -X POST \
 -H "accept: application/json" \
 -H "authorization: Bearer $VV_API_KEY" \
 -d@-

Response:

{
 "type": "Application",
 "id": "J3Or5KNHIUDl",
 "name": "MyNewApp",
 "created_at": "2023-08-18T23:14:03.782059707Z",
 "updated_at": "2023-08-18T23:15:41.060329051Z",
 "metadata": {
 "mykey1": "myval1"
 },
 "secret": "4fZyeKjrJaBbFVeLzQy2TCsJ",
 "login_url": "https://example.test/auth/login",
 "logout_urls": [
 "https://example.test/auth/logout"
],
 "redirect_urls": [
 "https://example.test/auth/callback"
]
}

DELETE /v1/tenants/:tenant_id/applications/:application_id

Delete returns the latest version of the deleted object before permanently removing it from the system, all future GET requests are guaranteed to no longer return the object.

Request:

curl \
 https://api.vaultvision.com/v1/tenants/CmKJPDorO34hGJ0J/applications/37SenPbBds9q \
 -X DELETE \
 -H "accept: application/json" \
 -H "authorization: Bearer $VV_API_KEY"

Response:

{
 "type": "Application",
 "id": "37SenPbBds9q",
 "name": "MyNewApp",
 "created_at": "2023-08-18T23:08:56.256482702Z",
 "updated_at": "2023-08-18T23:08:56.256482702Z",
 "login_url": "https://example.test/auth/login",
 "logout_urls": [
 "https://example.test/auth/logout"
],
 "redirect_urls": [
 "https://example.test/auth/callback"
]
}

POST /v1/tenants/:tenant_id/users

Create a new user with no credentials, they will need to reset their password to login.

Request:

echo '{
 "metadata": { "other_id": "other_id_01" },
 "profile": {
 "email": "test01@example.test",
 "name": "Test User01",
 "given_namename": "Test",
 "family_name": "User01"
 }
}' | curl \
 https://api.vaultvision.com/v1/tenants/CmKJPDorO34hGJ0J/users \
 -X POST \
 -H "accept: application/json" \
 -H "authorization: Bearer $VV_API_KEY" \
 -d@-

Response:

{
 "type": "User",
 "id": "9cb0Q44OoPO4",
 "created_at": "2023-08-21T15:04:24.344871427Z",
 "updated_at": "2023-08-21T15:04:24.344871427Z",
 "metadata": {
 "other_id": "other_id_01"
 },
 "profile": {
 "name": "Test User01",
 "family_name": "User01",
 "email": "test01@example.test"
 }
}

GET /v1/tenants/:tenant_id/users

Request:

curl \
 https://api.vaultvision.com/v1/tenants/CmKJPDorO34hGJ0J/users \
 -X GET \
 -H "accept: application/json" \
 -H "authorization: Bearer $VV_API_KEY"

Response:

{
 "type": "List",
 "total": 1,
 "count": 1,
 "limit": 100,
 "data": [
 {
 "type": "User",
 "id": "9cb0Q44OoPO4",
 "created_at": "2023-08-21T15:04:24.344871427Z",
 "updated_at": "2023-08-21T15:06:43.49365588Z",
 "metadata": {
 "other_id": "other_id_01"
 },
 "profile": {
 "name": "Test User01",
 "family_name": "User01",
 "email": "test01@example.test"
 }
 }
]
}

GET /v1/tenants/:tenant_id/users/:user_id

Get a user.

Request:

curl \
 https://api.vaultvision.com/v1/tenants/CmKJPDorO34hGJ0J/users/9cb0Q44OoPO4 \
 -X GET \
 -H "accept: application/json" \
 -H "authorization: Bearer $VV_API_KEY"

Response:

{
 "type": "User",
 "id": "9cb0Q44OoPO4",
 "created_at": "2023-08-21T15:04:24.344871427Z",
 "updated_at": "2023-08-21T15:13:47.787592127Z",
 "metadata": {
 "other_id": "other_id_01"
 },
 "profile": {
 "name": "Test User01",
 "family_name": "User01",
 "email": "test01@example.test"
 }
}

POST /v1/tenants/:tenant_id/users/:user_id

Update a user.

Request:

curl \
 https://api.vaultvision.com/v1/tenants/CmKJPDorO34hGJ0J/users/9cb0Q44OoPO4 \
 -X GET \
 -H "accept: application/json" \
 -H "authorization: Bearer $VV_API_KEY" \
 | jq -r '. += {"metadata": {"other_id":"other_id_01"}}' \
 | curl \
 https://api.vaultvision.com/v1/tenants/CmKJPDorO34hGJ0J/users/9cb0Q44OoPO4 \
 -X POST \
 -H "accept: application/json" \
 -H "authorization: Bearer $VV_API_KEY" \
 -d@-

Response:

{
 "type": "User",
 "id": "9cb0Q44OoPO4",
 "created_at": "2023-08-21T15:04:24.344871427Z",
 "updated_at": "2023-08-21T15:13:47.787592127Z",
 "metadata": {
 "other_id": "other_id_01"
 },
 "verified_at": "2023-08-21T15:06:43.49365588Z",
 "profile": {
 "name": "Test User01",
 "family_name": "User01",
 "email": "test01@example.test",
 "email_verified": true
 }
}

DELETE /v1/tenants/:tenant_id/users/:user_id

Delete returns the latest version of the deleted object before permanently removing it from the system, all future GET requests are guaranteed to no longer return the object.

Request:

curl \
 https://api.vaultvision.com/v1/tenants/CmKJPDorO34hGJ0J/users/9cb0Q44OoPO4 \
 -X DELETE \
 -H "accept: application/json" \
 -H "authorization: Bearer $VV_API_KEY"

Response:

{
 "type": "User",
 "id": "9cb0Q44OoPO4",
 "created_at": "2023-08-21T15:04:24.344871427Z",
 "updated_at": "2023-08-21T15:13:47.787592127Z",
 "metadata": {
 "other_id": "other_id_01"
 },
 "profile": {
 "name": "Test User01",
 "family_name": "User01",
 "email": "test01@example.test"
 }
}

GET /v1/tenants/:tenant_id/users/:user_id/credentials

Request:

curl \
 https://api.vaultvision.com/v1/tenants/CmKJPDorO34hGJ0J/users/9cb0Q44OoPO4/credentials \
 -X GET \
 -H "accept: application/json" \
 -H "authorization: Bearer $VV_API_KEY"

Response:

{
 "type": "List",
 "total": 1,
 "count": 1,
 "limit": 100,
 "data": [
 {
 "type": "PasswordCredential",
 "id": "password",
 "created_at": "2023-08-21T16:30:26.641417117Z",
 "updated_at": "2023-08-21T16:30:35.576230491Z",
 "password": {
 "alg": "bcrypt",
 "cost": 10,
 "hash": "JDJhJDEwJFA1NFEzSzIxYlZtUjFVcVYwbm1VSS5KYnV0cUVJMzVnQ29kUjRyQlRtdUtyN0JVVklCUkZL"
 }
 }
]
}

POST /v1/tenants/:tenant_id/users/:user_id/credentials

Create a new user credential. Only password credentials may be created in this way but we may add more credential types in the future.

Below is an example of creating a credential using a plain text password:

Request:

echo '{
 "type": "PasswordCredential",
 "password": {
 "alg": "plain",
 "hash": "1234567890"
 }
}' | curl \
 https://api.vaultvision.com/v1/tenants/CmKJPDorO34hGJ0J/users/6fkflQib1ehm/credentials \
 -X POST \
 -H "accept: application/json" \
 -H "authorization: Bearer $VV_API_KEY" \
 -d@-

Response:

{
 "type": "PasswordCredential",
 "id": "password",
 "created_at": "2023-08-22T17:37:44.374457721Z",
 "updated_at": "2023-08-22T17:37:44.374457721Z",
 "password": {
 "alg": "bcrypt",
 "hash": "$2a$10$lcDfETaxcazpR47RCTBNvurpDi3ouniK5wXDNBK/eZgRE.nJYAlqa"
 }
}

Note

The password credential always has the ID of password. Only one password credential can exist at a time.

When importing from an existing system it might be necessary to use the systems existing password hash functions. The following types of hashes may be specified in the alg field when creating a password credential:

	bcrypt

	plain

	md5

	sha1

	sha256

	sha512

When bcrypt is specified the cost of the supplied hash must be within a tolerance of our current standard bcrypt cost of 10 or an error will be returned. If it is not identical to our current standard cost the first time a user logs in the hash will be upgraded to our standard cost factor.

When md5, sha1, sha256, sha512 are specified the given hash will be wrapped in the form of $ALG|bcrypt, i.e. md5|bcrypt .. sha512|bcrypt. This tells our authentication system to first hash the users supplied password with $ALG before comparing it with bcrypt. If the login is successful the stored hash will be updated and the double hashing removed, e.g. $ALG|bcrypt -> first login -> bcrypt.

We can see this in action by running the following test. If you already have a hash, you can skip ahead to the request. Otherwise you can get a hash with the following commands found in most linux distros:

echo -n "1234567890" | md5sum | awk '{print $1}'
> e807f1fcf82d132f9bb018ca6738a19f
echo -n "1234567890" | sha1sum | awk '{print $1}'
> 01b307acba4f54f55aafc33bb06bbbf6ca803e9a
echo -n "1234567890" | sha256sum | awk '{print $1}'
> c775e7b757ede630cd0aa1113bd102661ab38829ca52a6422ab782862f268646
echo -n "1234567890" | sha512sum | awk '{print $1}'
> 12b03226a6d8be9c6e8cd5e55dc6c7920caaa39df14aab92d5e3ea9340d1c8a4d3d0b8e4314f1f6ef131ba4bf1ceb9186ab87c801af0d5c95b1befb8cedae2b9

Request:

echo '{
 "type": "PasswordCredential",
 "password": {
 "alg": "sha256",
 "hash": "c775e7b757ede630cd0aa1113bd102661ab38829ca52a6422ab782862f268646"
 }
}' | curl \
 https://api.vaultvision.com/v1/tenants/CmKJPDorO34hGJ0J/users/6fkflQib1ehm/credentials \
 -X POST \
 -H "accept: application/json" \
 -H "authorization: Bearer $VV_API_KEY" \
 -d@-

Response:

{
 "type": "PasswordCredential",
 "id": "password",
 "created_at": "2023-08-22T17:48:47.26937881Z",
 "updated_at": "2023-08-22T17:48:47.26937881Z",
 "password": {
 "alg": "sha256|bcrypt",
 "hash": "$2a$10$j00eE6DTimtrqB9JlI.8AOW2f5RnCL/6D4y3OmCED4sIZiF6Y8U3S"
 }
}

You can see the alg is currently sha256|bcrypt. Now let’s login to our test user so the credential can be updated to bcrypt and get the latest credential:

Request:

curl \
 https://api.vaultvision.com/v1/tenants/CmKJPDorO34hGJ0J/users/6fkflQib1ehm/credentials/password \
 -X GET \
 -H "accept: application/json" \
 -H "authorization: Bearer $VV_API_KEY"

Response:

{
 "type": "PasswordCredential",
 "id": "password",
 "created_at": "2023-08-22T17:48:47.26937881Z",
 "updated_at": "2023-08-22T17:49:09.616763917Z",
 "password": {
 "alg": "bcrypt",
 "hash": "$2a$10$ocmiG9heGDB0AkLWn3XeyuXpaptESluust78Yx6vODARemPJQNqYK"
 }
}

GET /v1/tenants/:tenant_id/users/:user_id/credentials/:credential_id

Request:

curl \
 https://api.vaultvision.com/v1/tenants/CmKJPDorO34hGJ0J/users/6fkflQib1ehm/credentials/password \
 -X GET \
 -H "accept: application/json" \
 -H "authorization: Bearer $VV_API_KEY"

Response:

{
 "type": "PasswordCredential",
 "id": "password",
 "created_at": "2023-08-22T17:48:47.26937881Z",
 "updated_at": "2023-08-22T17:49:09.616763917Z",
 "password": {
 "alg": "bcrypt",
 "hash": "$2a$10$ocmiG9heGDB0AkLWn3XeyuXpaptESluust78Yx6vODARemPJQNqYK"
 }
}

POST /v1/tenants/:tenant_id/users/:user_id/credentials/:credential_id

Update a users credential. All credential types may be disabled/enabled and have the metadata updated, but only passowrds allow other fields to be modified.

Below is an example of how to disable the users password:

Request:

curl \
 https://api.vaultvision.com/v1/tenants/CmKJPDorO34hGJ0J/users/6fkflQib1ehm/credentials/password \
 -X GET \
 -H "accept: application/json" \
 -H "authorization: Bearer $VV_API_KEY" \
 | jq -r '. += {"disabled": true}' \
 | curl \
 https://api.vaultvision.com/v1/tenants/CmKJPDorO34hGJ0J/users/6fkflQib1ehm/credentials/password \
 -X POST \
 -H "accept: application/json" \
 -H "authorization: Bearer $VV_API_KEY" \
 -d@-

Response:

{
 "type": "PasswordCredential",
 "id": "password",
 "created_at": "2023-08-22T17:48:47.26937881Z",
 "updated_at": "2023-08-22T17:55:25.626537952Z",
 "disabled": true,
 "password": {
 "alg": "bcrypt",
 "hash": "$2a$10$ocmiG9heGDB0AkLWn3XeyuXpaptESluust78Yx6vODARemPJQNqYK"
 }
}

DELETE /v1/tenants/:tenant_id/users/:user_id/credentials/:credential_id

Delete will remove the credential for the given user, if it is their last remaining credential they will no longer be able to login.

Note

The user can still perform a password reset to gain access to their account, set the user to “disabled” if you want to block future logins. See Example - Disable a user.

Request:

curl \
 https://api.vaultvision.com/v1/tenants/CmKJPDorO34hGJ0J/users/6fkflQib1ehm/credentials/password \
 -X DELETE \
 -H "accept: application/json" \
 -H "authorization: Bearer $VV_API_KEY"

Response:

{
 "type": "PasswordCredential",
 "id": "password",
 "created_at": "2023-08-22T17:48:47.26937881Z",
 "updated_at": "2023-08-22T17:55:25.626537952Z",
 "disabled": true,
 "password": {
 "alg": "bcrypt",
 "hash": "$2a$10$ocmiG9heGDB0AkLWn3XeyuXpaptESluust78Yx6vODARemPJQNqYK"
 }
}

Examples

Below are some simple runnable examples using curl along side jq[#9].

jq is a command-line JSON processor that we will use in these examples as an easy way to take the JSON outputs from API calls make a minor modification and then pass that modified JSON as input into the next API call. Because udpates to objects require ALL the fields of an object, even the fields that aren’t changing, you will see the jq library used in this specific pattern is used to make updating a single field as easy possible. Simply put, in order to make updates, you need to first do a GET of an object to fetch all its fields, then modify the fields you wish to change and POST the entire modified object back to the API. The jq library is an easy way to do this JSON modification on the command-line. If you are using a language like javascript or python, you can perform this pattern without the use of jq. jq is used in these examples because they are command-line examples.

Note

All the example data here was randomly generated for this documentation. Everything from the application secrets to the object ID’s have never actually existed. You must replace them with your own data for the requests to work.

Example - Changing a Tenant Setting (JQ)

Here’s a simple one liner to change the “allow_unverified” field to false using jq and curl. This works by sending a GET to fetch the tenant object, editing the response inline, and posting it directly back to the API.

curl \
 https://api.vaultvision.com/v1/tenants/CmKJPDorO34hGJ0J \
 -X GET \
 -H "accept: application/json" \
 -H "authorization: Bearer $VV_API_KEY" \
 | jq -r '.settings.allow_unverified = false' \
 | curl \
 https://api.vaultvision.com/v1/tenants/CmKJPDorO34hGJ0J \
 -X POST \
 -H "accept: application/json" \
 -H "authorization: Bearer $VV_API_KEY" \
 -d@-

Note

When allow_unverified is false users that haven’t verified their email address are redirected to the email verification workflow, which must be completed before they are able to login.

Example - Changing a Tenant Setting (Manual)

Here’s a step by step example of how to change the “allow_unverified” field to false.

First lets get the latest version of our tenant:

curl \
 https://api.vaultvision.com/v1/tenants/CmKJPDorO34hGJ0J \
 -X GET \
 -H "accept: application/json" \
 -H "authorization: Bearer $VV_API_KEY"

Our result:

{
 "type": "Tenant",
 "id": "CmKJPDorO34hGJ0J",
 "name": "acme01",
 "created_at": "2023-08-18T15:11:28.708085985Z",
 "updated_at": "2023-08-18T21:58:05.547823288Z",
 "settings": {
 "domain": "acme01.vvkey.test",
 "company_name": "acme01",
 "support_email": "support@acme01.test",
 "allow_social": true,
 "allow_hardware": true,
 "allow_passwords": true,
 "allow_totp_app": true,
 "allow_totp_email": true,
 "allow_unverified": true,
 "remember_device": true,
 "remember_device_seconds": 2592000,
 "remember_login_seconds": 2592000,
 "allow_signups": true
 }
}

Now put these settings in a file and edit them by hand. One option is we can use bash to quickly create a tenant-update.json file.

echo '{
 "type": "Tenant",
 "id": "CmKJPDorO34hGJ0J",
 "name": "acme01",
 "created_at": "2023-08-18T15:11:28.708085985Z",
 "updated_at": "2023-08-18T21:58:05.547823288Z",
 "settings": {
 "domain": "acme01.vvkey.test",
 "company_name": "acme01",
 "support_email": "support@acme01.test",
 "allow_social": true,
 "allow_hardware": true,
 "allow_passwords": true,
 "allow_totp_app": true,
 "allow_totp_email": true,
 "allow_unverified": false,
 "remember_device": true,
 "remember_device_seconds": 2592000,
 "remember_login_seconds": 2592000,
 "allow_signups": true
 }
}' > tenant-update.json

Send the updated settings to the API:

curl \
 https://api.vaultvision.com/v1/tenants/CmKJPDorO34hGJ0J \
 -X POST \
 -H "accept: application/json" \
 -H "authorization: Bearer $VV_API_KEY" \
 -d@tenant-update.json

The response should show allow_unverified setting is now set to false as well as the updated_at field will reflect the time of the change.

{
 "type": "Tenant",
 "id": "CmKJPDorO34hGJ0J",
 "name": "acme01",
 "created_at": "2023-08-18T15:11:28.708085985Z",
 "updated_at": "2023-08-18T21:58:15.547823288Z",
 "settings": {
 "domain": "acme01.vvkey.test",
 "company_name": "acme01",
 "support_email": "support@acme01.test",
 "allow_social": true,
 "allow_hardware": true,
 "allow_passwords": true,
 "allow_totp_app": true,
 "allow_totp_email": true,
 "allow_unverified": false,
 "remember_device": true,
 "remember_device_seconds": 2592000,
 "remember_login_seconds": 2592000,
 "allow_signups": true
 }
}

Example - Metadata

Here’s an example of how to add metadata using curl:

curl \
 https://api.vaultvision.com/v1/tenants/CmKJPDorO34hGJ0J \
 -X GET \
 -H "accept: application/json" \
 -H "authorization: Bearer $VV_API_KEY" \
 | jq -r '. += {"metadata": {"mykey1":"myval1"}}' \
 | curl \
 https://api.vaultvision.com/v1/tenants/CmKJPDorO34hGJ0J \
 -X POST \
 -H "accept: application/json" \
 -H "authorization: Bearer $VV_API_KEY" \
 -d@-

Example - Disable a user

Disabling a user blocks them from logging in.

Request:

curl \
 https://api.vaultvision.com/v1/tenants/CmKJPDorO34hGJ0J/users/9cb0Q44OoPO4 \
 -X GET \
 -H "accept: application/json" \
 -H "authorization: Bearer $VV_API_KEY" \
 | jq -r '. += {"disabled": true}' \
 | curl \
 https://api.vaultvision.com/v1/tenants/CmKJPDorO34hGJ0J/users/9cb0Q44OoPO4 \
 -X POST \
 -H "accept: application/json" \
 -H "authorization: Bearer $VV_API_KEY" \
 -d@-

Response:

{
 "type": "User",
 "id": "9cb0Q44OoPO4",
 "created_at": "2023-08-21T15:04:24.344871427Z",
 "updated_at": "2023-08-21T15:38:10.606366075Z",
 "metadata": {
 "other_id": "other_id_01"
 },
 "disabled": true,
 "verified_at": "2023-08-21T15:06:43.49365588Z",
 "profile": {
 "name": "Test User01",
 "family_name": "User01",
 "email": "test01@example.test",
 "email_verified": true
 }
}

Example - Enable a user

Enable a user that was previously disabled.

Request:

curl \
 https://api.vaultvision.com/v1/tenants/CmKJPDorO34hGJ0J/users/9cb0Q44OoPO4 \
 -X GET \
 -H "accept: application/json" \
 -H "authorization: Bearer $VV_API_KEY" \
 | jq -r '. += {"disabled": false}' \
 | curl \
 https://api.vaultvision.com/v1/tenants/CmKJPDorO34hGJ0J/users/9cb0Q44OoPO4 \
 -X POST \
 -H "accept: application/json" \
 -H "authorization: Bearer $VV_API_KEY" \
 -d@-

Response:

{
 "type": "User",
 "id": "9cb0Q44OoPO4",
 "created_at": "2023-08-21T15:04:24.344871427Z",
 "updated_at": "2023-08-21T15:38:53.495536342Z",
 "metadata": {
 "other_id": "other_id_01"
 },
 "verified_at": "2023-08-21T15:06:43.49365588Z",
 "profile": {
 "name": "Test User01",
 "family_name": "User01",
 "email": "test01@example.test",
 "email_verified": true
 }
}

Footnotes

[#1]
https://vaultvision.com

[#2]
https://vaultvision.com

[#3]
https://en.wikipedia.org/wiki/Representational_state_transfer

[#4]
https://www.json.org/json-en.html

[#5]
https://www.json.org/json-en.html

[#6]
https://github.com/vaultvision/docs

[#7]
https://vaultvision.com/contact-us/

[#8]
https://manage.vaultvision.com/apikeys

[#9]
https://jqlang.github.io/jq/

API Keys - Vault Vision[#1]

API Keys grant access to Vault Vision’s[#2] API. You may create and manage API Keys in the management console[#3] and begin making requests to the public API at https://api.vaultvision.com.

Overview

First remember that your API Keys are a secret and must be kept secure, do not share your secret API keys in publicly accessible areas. To help identify them we give all API Keys a common prefix of "vv_". Beyond that all characters are random, some examples of what your secret API Keys look like:

	vv_oFVTAiPkICpOewyuV2mINX1rSFxzdIkR

	vv_uAmkBd4nRsjFPBfsJFrmvNmKOMARrapZ

Once you have an API Key you are ready to begin using the API. For more information about how to use them see the API Overview.

Privileges

API Keys gain privileges by allowing permissions on resources. By default they apply globally to all resources within all current tenants and any tenants created in the future. However toggling the Restricted button allows you to restrict access to only specific tenants instead.

The API has the following types of resources:

	All (matches all resources)

	Tenants

	Applications

	Metrics

	Users

	Credentials

	Identity Providers

	Email Providers

	Signing Keys

Each resource may have one of the following permissions:

	None

	Read

	Write (Read / Write)

Guide - Creating Global API Keys

This guide will walk you through creating your first secret API Key.

Step 1 - Login to Management Console

Navigate to the management console at management console[#4]. After logging in you will see a list of your current API Keys (if you have created any).

[image: api-manage-apikeys-list.png]

Step 2 - Create API Key

Click the + New button to open the Create API Key dialog. Once you selected a name for this key (used strictly for your own identification in the UI) click “Create”.

[image: api-manage-apikeys-create.png]

Step 3 - Review Settings

After creating your key you will be taken to the keys settings. Here you may select your key options for your new secret Global API Key. Below is an example of allowing read only access to all tenants.

Note

The privileges you grant Global API Keys apply to all of your current tenants and any tenant you create in the future.

[image: api-manage-apikeys-settings-global-read-all.png]

You may also grant global access to specific resources. For example to only allow access to READ ALL current (and future) Tenant Settings, READ only for your User resources and WRITE access to credentials you would do something like below:

[image: api-manage-apikeys-settings-global-mixed.png]

Step 4 - Restrict Privileges (OPTIONAL)

If you want to restrict access to one or more specific tenants you may toggle the Restricted option. Now you may
assign the same resource specific access controls to specific tenants. For example to only allow access to READ your sandbox (dev-xxxx prefixed) Tenant Settings and WRITE to your User resources you would do something like below:

[image: api-manage-apikeys-settings-restricted-mixed.png]

Footnotes

[#1]
https://vaultvision.com

[#2]
https://vaultvision.com

[#3]
https://manage.vaultvision.com/apikeys

[#4]
https://manage.vaultvision.com/apikeys

Custom Domains - Vault Vision[#1]

Note

CNAME for your custom domain
You may use a custom domain for your Vault Vision tenant, this requires a cname
pointing to nextgenauth.vaultvision.com.

Step 1

Go to the Start[#2] page in the Vault Vision[#3] Management Panel and enter your custom domain.

Step 2

Add a cname using your dns provider to point to nextgenauth.vaultvision.com.

Step 3

Wait for the cname to become active, once DNS resolves we will automatically issue a TLS certificate for your custom domain.

Footnotes

[#1]
https://vaultvision.com

[#2]
https://manage.vaultvision.com/start

[#3]
https://vaultvision.com

Identity Providers - Vault Vision[#1]

What is an Identity Provider?

An identity provider (aka an IdP) is a service that manages and provides user identity through some method of user authentication. IdPs are registered third party accounts (Google, Microsoft and Apple) that the user can use to prove their identity. The Idp becomes the central hub for that user to access other systems that know how to integrate with that IdP. Online services like Google, Microsoft and Apple maintain an available IdP for their users. This means as a user of their service, you can authenticate to other 3rd party systems using Microsoft, Google and Apple account credentials. This can be convenient because the user can now use your application or service without having to complete another account registration process, they can attach their Google or Microsoft account to your application or service. Vault Vision’s platform has developed these integrations with Google, Microsoft and Apple to save you and users time. See below for steps on how to add IdP functionality to your Vault Vision[#2] account.

Options

1. You can use the default Vault Vision applications at both Google and Microsoft. This will show the 'Vault Vision' brand as your users register their account with your application or service.

Or

2. You can create your own custom applications at Google and Microsoft and link them to the Vault Vision platform

How to register as an application with Google

	Create a Google Cloud Account
You must have a Google login, if you don’t you can create one here: (https://accounts.google.com/)[https://accounts.google.com/]

	In a browser, navigate to the Google Cloud Platform management console
(https://console.cloud.google.com)[https://console.cloud.google.com]

	In the right hand nav menu click APIs and Services > Credentials
[image: Navigate to APIs and Services Credentials]

	Now create a ‘project’, this is the core entity that will house your settings and give you a client id and client secret. We will call ours ‘Vault Vision Project’. ‘No organization’ will be just fine as a location
[image: Create a Project]
[image: Enter Project Name]

	Now ‘Configure Consent Screen’
[image: Configure Consent Screen]

	Set the User Type to ‘External’
[image: User Type to External]

	Edit App Registration:
You will need to set the following fields:

	App name

	User support email

	App logo

	Authorized domains (You will need the (Google Search Console for this)[https://support.google.com/webmasters/answer/9008080?hl=en&ref_topic=9455938])

	Application home page

	Application privacy policy link

	Application terms of service link

	Developer contact information

[image: App Registration]

	Add the scopes needed for authentication and to get user profile data and email address
[image: Scope Button]
Select the following scopes

	./auth/userinfo.email

	./auth/userinfo.profile

	openid
[image: Scopes]

	Add any test users you want to allow to test the integration with, these need to be real Google accounts
[image: Scopes]

	Return to the dashboard for the ‘OAuth consent screen’ and ‘Publish App’
[image: Publish]

	Navigate to Credentials menu in the right hand nav and click ‘Create Credentials’ then ‘OAuth client ID’ to create your OAuth 2.0 Client ID and secret
[image: Credentials]

	Select an ‘Application Type’
[image: App Type]

	Populate the Javascript Origins and Authorized redirect URIs

Set the Authorized JavaScript origins to the domain you used on your tenant, you can find that here at the top of the screen:
(Vault Vision Management Panel)[https://manage.vaultvision.com/go#applications]

Set Authorized redirect URIs to exactly the below:
https://callback.vvkey.io/oidc/callback

[image: redirect URIs]

In order for Google to allow you to interact with their Google user accounts, you will need to use your
- ability to have and handle 2 incoming routes open to the internet over port 443
- ability to perform 302 redirects
- ability to set and store 4 server-side variables (client_id, client_secret, base_url, your_callback_url). Most of the time these are stored as an environment or configuration variable.
- (optional) ability to maintain a session, this needed assuming you want users to only authenticate once and be in some kind of logged in state. This could be a cookie, session server, or session specific cache.
- (optional in the case of using a custom domain) ability to set a DNS CNAME for your custom domain that points to nextgenauth.vaultvision.com

Footnotes

[#1]
https://vaultvision.com

[#2]
https://vaultvision.com

Custom Branding Designer - Vault Vision[#1]

With our custom branding designer you will be able to set a custom image for your authentication pages

These are the available pages that you can customize

	Login

	Signup

	Forgot/Reset Password

	Verify Account (This is also the one used in the MFA/2FA verification flow)

Custom Image Example

See the below image and the area highlighted in red, this is the image that can be customized
[image: Custom Image]

Image requirements

The custom image should be:

	under 1MB

	.JPG or .PNG

	ideal dimension are 1080x1920, but the image is designed to scale to fit the area no matter what the browser viewport size is.

Custom Branding Designer Management Page

Update the URL values in the Vault Vision Management Panel[#2] for your designer.

Footnotes

[#1]
https://vaultvision.com

[#2]
https://manage.vaultvision.com/go#branding

NoCode HTML and JS AirTable Toolkit - Vault Vision[#1]

With our NoCode HTML and JS Toolkit you will be

These are the available pages that you can customize

	Login

	Signup

	Forgot/Reset Password

	Verify Account (This is also the one used in the MFA/2FA verification flow)

Footnotes

[#1]
https://vaultvision.com

ID Tokens, Access Tokens, UserInfo - Vault Vision[#1]

ID Tokens

An ID token is the result of a successful authenication sequence, it represents the assertion that the user represented by the identity enclosed inside the ID token has successful authenticated with a proper and valid credential. During an OAuth flow, the OAuth client application will receive this ID token as part of a payload in a callback that occurs after the user has been authenticated. Usually, the client application will then validate and decode this ID token and use the information contained in the token to establish a new user session in the client application for this newly validated and authenticated user. ID tokens are designed to be short lived and should NOT be re-used as a session token. Best practice is to create a new session JWT that you store in an HTTPOnly, SameSite, secure cookie (not in local storage, not in an unsecure cookie, and not in a javascript readable cookie; these locations are insecure and can be used it XSS attacks to steal a user’s session).

Formal definition from Open ID - ID token[#2]

The primary extension that OpenID Connect makes to OAuth 2.0 to enable End-Users to be Authenticated is the ID Token data structure. The ID Token is a security token that contains Claims about the Authentication of an End-User by an Authorization Server when using a Client, and potentially other requested Claims. The ID Token is represented as a JSON Web Token (JWT)[#3] [JWT].

Note

Great tool for decoding and inspecting signed JWTs

	JWT Decoder, Verifier, Generator, Decryptor[#4]

ID Token Example

See the below for the contents of the payload of an actual decoded JWT ID token issued by the Vault Vision authentication flow:

{
 iss: 'https://auth.vaultvision.com',
 sub: 'osjm55CZtYkr',
 aud: ['client-id'],
 exp: 1684517823,
 iat: 1684514223,
 auth_time: 1684513456,
 nonce: 'NQjSh-MmMHi0kqyK9ZV6TA8o73jsKMvt2c-caMx2c1Q'
}

This token asserts that the user (sub) with id of ‘osjm55CZtYkr’ successfully authenicated at: 1684513456 (Friday, May 19, 2023 4:24:16 PM)

Notice that the ‘exp’ (expire time) and ‘iat’ (issued at time) are 3600 apart, this is because the id tokens issued by Vault Vision are valid for 1 hour. NOTE: this expire time is just a sanity lifetime for the JWT itself and has nothing to do with the duration of the a user’s login session. It is just a simple expiry value to limit the time a token is considered valid. Even though a token is valid for 1 hour, actual user sessions lifetimes are configurable and can be configured for as little as 1 second or until the browser closes. Do not use this ID token ‘exp’ time as a user session expiration time.

Note

Great tool for decoding and inspecting signed JWTs

	JWT Decoder, Verifier, Generator, Decryptor[#5]

	iss

	REQUIRED. Issuer Identifier for the Issuer of the response. The iss value is a case sensitive URL using the https scheme that contains scheme, host, and optionally, port number and path components and no query or fragment components.

	sub

	REQUIRED. Subject Identifier. A locally unique and never reassigned identifier within the Issuer for the End-User, which is intended to be consumed by the Client, e.g., 24400320 or AItOawmwtWwcT0k51BayewNvutrJUqsvl6qs7A4. It MUST NOT exceed 255 ASCII characters in length. The sub value is a case sensitive string.

	aud

	REQUIRED. Audience(s) that this ID Token is intended for. It MUST contain the OAuth 2.0 client_id of the Relying Party as an audience value. It MAY also contain identifiers for other audiences. In the general case, the aud value is an array of case sensitive strings. In the common special case when there is one audience, the aud value MAY be a single case sensitive string.

	exp

	REQUIRED. Expiration time on or after which the ID Token MUST NOT be accepted for processing. The processing of this parameter requires that the current date/time MUST be before the expiration date/time listed in the value. Implementers MAY provide for some small leeway, usually no more than a few minutes, to account for clock skew. Its value is a JSON number representing the number of seconds from 1970-01-01T0:0:0Z as measured in UTC until the date/time. See RFC3339[#6] for details regarding date/times in general and UTC in particular.

	iat

	REQUIRED. Time at which the JWT was issued. Its value is a JSON number representing the number of seconds from 1970-01-01T0:0:0Z as measured in UTC until the date/time.

	auth_time

	Time when the End-User authentication occurred. Its value is a JSON number representing the number of seconds from 1970-01-01T0:0:0Z as measured in UTC until the date/time. When a max_age request is made or when auth_time is requested as an Essential Claim, then this Claim is REQUIRED; otherwise, its inclusion is OPTIONAL. (The auth_time Claim semantically corresponds to the OpenID 2.0 PAPE [OpenID.PAPE] auth_time response parameter.)

	nonce

	String value used to associate a Client session with an ID Token, and to mitigate replay attacks. The value is passed through unmodified from the Authentication Request to the ID Token. If present in the ID Token, Clients MUST verify that the nonce Claim Value is equal to the value of the nonce parameter sent in the Authentication Request. If present in the Authentication Request, Authorization Servers MUST include a nonce Claim in the ID Token with the Claim Value being the nonce value sent in the Authentication Request. Authorization Servers SHOULD perform no other processing on nonce values used. The nonce value is a case sensitive string.

Access Tokens

Access tokens are the tokens used to make authenticated requests to resource API endpoints. Resource servers use these access tokens to validate that the request is authentic and which types of claims to resources are being requested.

Formal definition from RFC 6749[#7]

Access tokens are credentials used to access protected resources. An access token is a string representing an authorization issued to the client. The string is usually opaque to the client. Tokens represent specific scopes and durations of access, granted by the resource owner, and enforced by the resource server and authorization server.

There are 3 specific points regarding access tokens that are key to the security model of OAuth:

	Access tokens must not be read or interpreted by the OAuth client. The OAuth client is not the intended audience of the token, the resource server is the intended audience for the access token.

	Access tokens do not convey user identity or any other information about the user to the OAuth client, ID tokens are used for that puprose.

	Access tokens should only be used to make requests to the resource server. Additionally, ID tokens must not be used to make requests to the resource server.

In a typical authentication flow, both an access token and an ID token are returned to the OAuth client in the auth callback as part of a token set. For the Vault Vision auth platform, the access token provided can be used to make a call into our ‘userinfo_endpoint’ to retrieve information about the user.

Access Token Example

No example is listed because these are specific to the resource API that consumes them. They should be treated as opaque by the OAuth client, and are a pass-through to that API. They should not be inspected or modified by the OAuth client. For the Vault Vision case, we issue the access token so that it can be used used in calls to our ‘userinfo’ endpoint. New access tokens can be regenerated by going through another authentication flow.

UserInfo

With a proper access token, a call can be made to our ‘userinfo_endpoint’ to retrieve a payload of information about the current authenticated user.

The response will contain a JSON object with details about the user, specified by the OpenID Connect Core spec[#8]

UserInfo Example

See below for a UserInfo JSON response example from the Vault Vision authentication userinfo endpoint:

{
 email: 'john@smith.com',
 email_verified: true,
 family_name: 'Smith',
 given_name: 'John',
 iss: 'https://auth.vaultvision.com',
 locale: 'en',
 name: 'John Smith',
 picture: 'https://lh3.googleusercontent.com/a/BeSWzMFuxbDk',
 sub: 'gtrbTuREykUH'
}

Footnotes

[#1]
https://vaultvision.com

[#2]
https://openid.net/specs/openid-connect-core-1_0.html#IDToken

[#3]
https://openid.net/specs/openid-connect-core-1_0.html#JWT

[#4]
https://dinochiesa.github.io/jwt/

[#5]
https://dinochiesa.github.io/jwt/

[#6]
https://www.rfc-editor.org/rfc/rfc3339

[#7]
https://datatracker.ietf.org/doc/html/rfc6749#section-1.4

[#8]
https://openid.net/specs/openid-connect-core-1_0.html#UserInfoResponse

Index

NoCode Deployment Options

HTML Dynamic Auth Elements and Class Name

##Specific Auth Element
auth-button [auth-button-settings, auth-button-login, auth-button-logout, auth-button-signup]
auth-href-issuer-settings Will change the href attribute of to the location of the User Settings page provided by the issuer

#Generic Auth Clases
.authed - a CSS class that will trigger the element to be visible when there is an authenticated user (have its d-none class removed. NOTE: element must initially have a d-none class)
.unauthed - a CSS class that will trigger the element to be visible when there is NO authenticated user (have its d-none class removed. NOTE: element must initially have a d-none class)

#Generic Auth Field
These elements will prefill certain attributes based on the field passed in the data-auth-user-field attribute, if the data is falsey, those attributes will be defaulted to what is passed in the data-auth-default attribute
auth-src [auth-src-user, auth-src-table]
auth-label [auth-label-user, auth-label-table]
auth-list [auth-list-table]

#Data attributes
data-auth-href
data-auth-user-field - this is the field on the user object that will be used to populate the HTML element. (ex. name, email)
data-auth-default - this is the value to populate the HTML element when the field is falsey
data-auth-table - this is the name of the table that will be the source of data for this element
data-auth-baseid - this is the id for the AirTable base that contains the table
data-auth-table-field - this is the field/column from the table that will be used to populate the HTML element
data-auth-table-cache - this can either be: “page” or “none”; “page” will mean that the data call is only made once per page load, “none” means the data call will be made for each element rather than caching. By using “page” the data is cached once per page load so it can be re-used by multiple elements without making multiple calls.
data-auth-table-ul-class - this is the class list that will be applied to the UL element, can be multiple as a space separated string
data-auth-table-li-class - this is the class list that will be applied to the LI element, can be multiple as a space separated string
data-auth-table-templatestring - this is a JS template literal string that will do a field replacement based on using ${field} (ex. data-auth-table-templatestring=”Hello ${field}, how is your day)”; ${field} must be exactly ${field} and not the name of the field set in data-auth-table-field

Footnotes

 _images/api-manage-apikeys-create.png
« 5> C 6 08 = Vaultvision.com

b
]

Create APl Key

API Key Name *

Test01

_images/api-manage-apikeys-list.png
J vauLT vision

API Keys

Vault Vision allows you to create API keys 5o that you can have programmatic
access to our services. API keys can have granular access to help you maintain
strict access.

WARNING: API keys with 'update’ access can be used to reset credentials on
user accounts, this should be granted sparingly and only under tight controls.

Learn more about API Keys >

APIKeys +New
Name Type Status Secret Created
° global Global Enabled Show Secret 6/30/2023

2021 - 2023 Vault Vision, Inc. All Rights Reserved.

& Export

1.0490

_images/api-manage-apikeys-settings-global-mixed.png
J vauLT vision

API Key Settings

Assign a friendly name for this key

Friendly Name

Test01

Key Options

Enabled Disabled

Global Restricted

You can restrict an AP key to be scoped to specific tenants, ‘Global" keys have access to ALL tenants

Global Permissions

Disabling an API Key will cause all requests with that key to fail

These permissions will apply to your current tenants and all new tenants you create

Resource

Al

Tenants

Applications

Metrics

Users

Credentials

Identity Providers

Email Providers

Signing Keys

Permission

None

None

Read

Read

None

None

None

None

Read

Read

Read

None

None

None

Read

Read

Read

Read

Write

Write

Write

Write

Write

Write

Write

Write

Write

_images/api-manage-apikeys-settings-global-read-all.png
J vauLT vision

Assign a friendly name for this key

Friendly Name

Test01

Key Options

Enabled

Global

Disabled

Disabling an API Key will cause all requests with that key to fail

Restricted

You can restrict an AP key to be scoped to specific tenants, ‘Global" keys have access to ALL tenants

Global Permissions

These permissions will apply to your current tenants and all new tenants you create

Resource

Al

Tenants

Applications

Metrics

Users

Credentials

Identity Providers

Email Providers

Signing Keys

Permission

None Read Write

nav.xhtml

 Table of Contents

 		
 Developers - Vault Vision

 		
 Quick Start

 		
 Create an Account at Vault Vision

 		
 Try out your development sandbox

 		
 Run your own example application locally

 		
 Get your configuration values

 		
 Run the Go auth example

 		
 Run the Node auth example

 		
 Run the Python auth example

 		
 Run the React js boilerplate example

 		
 Run the HTML boilerplate example

 		
 Testing your local example

 		
 Tenants

 		
 Properties

 		
 Actions

 		
 Applications

 		
 Properties

 		
 Actions

 		
 Users

 		
 Properties

 		
 Actions

 		
 Concepts and Diagrams

 		
 Typical OIDC Application to Authentication Provider Flow Strategy and Diagrams

 		
 Login Flow Diagram

 		
 Step 1

 		
 Step 2

 		
 Reference

 		
 Typical OIDC Application to User Auth Provider Flow Diagrams

 		
 Step 1

 		
 Step 2

 		
 Express Migration

 		
 Step 1

 		
 Step 2 - Create an Account at Vault Vision

 		
 Step 3 - Update the application to use the determined URLs

 		
 Step 4 add the OIDC open source client library

 		
 Step 5 copy the environment variables

 		
 Step 6 create a OIDC client using the open source library

 		
 Step 7 create a login route

 		
 Step 8 create a logout route

 		
 Step 9 create a callback route

 		
 Step 10 import users, and assign a new forigen key

 		
 Step 11 update any session creation and tear down

 		
 Overview

 		
 Overview

 		
 Authentication

 		
 Metadata

 		
 Errors

 		
 Update/Create Conventions

 		
 Paths

 		
 GET /v1/tenants

 		
 GET /v1/tenants/:tenant_id

 		
 POST /v1/tenants/:tenant_id

 		
 POST /v1/tenants/:tenant_id/applications

 		
 GET /v1/tenants/:tenant_id/applications

 		
 GET /v1/tenants/:tenant_id/applications/:application_id

 		
 POST /v1/tenants/:tenant_id/applications/:application_id

 		
 DELETE /v1/tenants/:tenant_id/applications/:application_id

 		
 POST /v1/tenants/:tenant_id/users

 		
 GET /v1/tenants/:tenant_id/users

 		
 GET /v1/tenants/:tenant_id/users/:user_id

 		
 POST /v1/tenants/:tenant_id/users/:user_id

 		
 DELETE /v1/tenants/:tenant_id/users/:user_id

 		
 GET /v1/tenants/:tenant_id/users/:user_id/credentials

 		
 POST /v1/tenants/:tenant_id/users/:user_id/credentials

 		
 GET /v1/tenants/:tenant_id/users/:user_id/credentials/:credential_id

 		
 POST /v1/tenants/:tenant_id/users/:user_id/credentials/:credential_id

 		
 DELETE /v1/tenants/:tenant_id/users/:user_id/credentials/:credential_id

 		
 Examples

 		
 Example - Changing a Tenant Setting (JQ)

 		
 Example - Changing a Tenant Setting (Manual)

 		
 Example - Metadata

 		
 Example - Disable a user

 		
 Example - Enable a user

 		
 API Keys

 		
 Overview

 		
 Privileges

 		
 Guide - Creating Global API Keys

 		
 Step 1 - Login to Management Console

 		
 Step 2 - Create API Key

 		
 Step 3 - Review Settings

 		
 Step 4 - Restrict Privileges (OPTIONAL)

 		
 Custom Domains

 		
 Step 1

 		
 Step 2

 		
 Step 3

 		
 Custom Identity Providers

 		
 What is an Identity Provider?

 		
 Options

 		
 How to register as an application with Google

 		
 Custom Branding Designer

 		
 With our custom branding designer you will be able to set a custom image for your authentication pages

 		
 Custom Image Example

 		
 Image requirements

 		
 Custom Branding Designer Management Page

 		
 NoCode HTML and JS AirTable Toolkit

 		
 With our NoCode HTML and JS Toolkit you will be

 		
 ID tokens, Access tokens, UserInfo

 		
 ID Tokens

 		
 ID Token Example

 		
 Access Tokens

 		
 Access Token Example

 		
 UserInfo

 		
 UserInfo Example

_images/custom-image.png
/QVAUI.T VvisioN

Secure auth

Register Already User? Login

Email address

Passkey Password

RGN)

I accept the terms and privacy policy
I

or register with

[o cooge][e apple][maMicrosont |

_images/step1.png
© Getting started — Getting started. X+

< C & consolecloudgoogle.com

! Cloud overview >

© Recent >

PINNED

API APIs & Services >
Enabled APIs & services

gilling Library

Credentials
1AM & Admin >

OAuth consent screen

[e- 2

Marketplace Domain verification

® @ B

Compute Engine > Pageusageagreements ne Cloud Storage Cloud SQL
¥ e, Figh-gerformance virtual jerful, simple and cost A fully-managed MysaL,
Kubernetes Engine > machines fective object storage ser QL and SQL Server
abase service
= Cloud Storage >
@ BigQuery >
3T vPCnetwork >
)» Cloud Run Engage Handy Links
$ sa Blog Download GCP Mobi
» Security > Cormmunity Instal the Cloud SOK

‘) Google Maps Plat > N

1 Signup Documentation

_images/api-manage-apikeys-settings-restricted-mixed.png
AJ vauLT vision

API Key Settings

Assign a friendly name for this key

Friendly Name

Test01

Key Options

Enabled Disabled

Disabling an API Key will cause all requests with that key to fail

Global Restricted

You can restrict an AP key to be scoped to specific tenants, ‘Global" keys have access to ALL tenants

Restricted Key Settings

By default a restricted key has no access. To allow requests you must grant explict permissions. You may grant specific permissions
per tenant. If you want to allow this key to access all tentants, you must change it from Restricted to ‘Global.

dev-tnbuvl.vvkey.io

Resource

Al

Tenants

Applications

Metrics

Users

Credentials

Identity Providers

Email Providers

Signing Keys

Permission

None

None

None

None

None

None

None

None

None

Read

Read

Read

Read

Read

Read

Read

Read

Read

Write

Write

Write

Write

Write

Write

Write

Write

Write

_images/step12.png
Google Cloud Platform $e Vauit Vision Project v Q Search Products, resources, docs (/)

API APIs & Services 4 Create OAuth client ID

«» Enabled APIs & services Aclient ID is used to identify a single app to Google's OAuth servers. If your app runs on

multiple platforms, each wil need its own client ID. See Setting up OAuth 2.0 for more

i Library information. Learn more about OAuth client types.
o Credentials Application type *
Web application J
Android
Domain verification
Chrome app

Page usage agreements 108

TVs and Limited Input devices
Desktop app

Universal Windows Platform (UWP)

<

_images/step13.png
x

d.g 2 @)

Google Cloud Platform $e Vauit Vision Project v Q Search Products, resources, docs (/)

API APIs & Services 4 Create OAuth client ID

«» Enabled APIs & services Aclient ID is used to identify a single app to Google's OAuth servers. If your app runs on

multiple platforms, each wil need its own client ID. See Setting up OAuth 2.0 for more

i Library information. Learn more about OAuth client types.
o Credentials Application type * §
‘ Web application - ‘
OAuth consent screen b
- Name* .
Domain verification [webclent1 ‘

“The name of your OAuth 2.0 client. This name is only used {o identify the client in the
Page usage agreements ‘console and willnot be shown to end users.

‘The domains of the URIs you add below will be automatically added to
Your OAuth consent screen as authorized domains.

Authorized JavaScript origins @

For use with requests from a browser

<+ ADD URI

Authorized redirect URIs @

For use with requests from a web server

=+ ADD URI

Note: it may take 5 minutes to a few hours for settings totake effect

<

create [N

_images/step10.png
Outh

Google Cloud Platform Vault Vision Project v Q Search Products, resources, docs (/)

API APIs & Services OAuth consent screen

@ Enabled APIs & services

Vault Vision Net , eorraee

W Ubrary

o Credentials

Publishing status @

OAuth consent screen
Testing

Domain verification
PUBLISH APP

Page usage agreements

User type

External @

MAKE INTERNAL

OAuth usercap @

While publishing status is set to "Testing", only test users are able to access
the app. Allowed user cap prior to app verification is 100, and is counted over
the entire lifetime of the app. Learn more

. 2users (2 test, 0 cther) / 100 usercap @

Test users

<+ ADD USERS

a er Enter property name or value o

_images/step11.png
g

Google Cloud Platform

API APIs & Services

% Enabled APIs & services

W Ubrary

o Credentials

OAuth consent screen

Domain verification

s Page usage agreements

e Vault Vision Project v | Q. Search Products, resources, docs (/)

T CREATE CREDENTIALS > W DELETE

APl key
Create credentials to a0 [gentifies

Credentials

le AP key to check quo

OAuth client ID

Requests user consent so your app can access the user's

API Keys

O Name Service account
Enables server-to-server, app-

el authentication using robot accounts
No AP1 keys to displa

Help me choose
OAuth 2.0 Client | asks s few questions to

type of credential to use

O Name Creation date & Type Glent ID

No OAuth clients to display

Service Accounts

O ema Name

No service accounts to display

Actions.

Actions.

Manage service accounts

Actions.

_images/step2.png
Credentials — AP

<

c

Google Cloud Platform selectaproject v Q Search Products, resources, docs (/)

APIs & Services Credentials

Enabled APIs & services
@ Toviewthis page, select a project CREATE PROJECT
Library
Credentials
OAuth consent screen
Domain verification

Page usage agreements

_images/step3.png
x4

g

Google Cloud Platform Q Search Products, resources, docs (/)

New Project

You have 12 projects remaining in your quota. Request an increase or
delete projects. Learn more

MANAGE QUOTAS

Projectname *
[Vault Vision Project °

Pre

D: vault-vision-project. It cannot be changed later. EDIT

— Location*
‘ BB No organization BROWSE

1t organization or folder

create VAR

_images/step4.png
g

Google Cloud Platform $e Vauit Vision Project v Q Search Products, resources, docs (/)

API APIs & Services Credentials + CREATECREDENTIALS § DELETE

«» Enabled APIs & services Create credentials to access your enabled APIs. Learn more.

W Ubrary

A Rememberto configure the OAuth consent screen with information about your application.

o Credentials

OAuth consent screen API Keys

Domain verification O Name Creation date

No AP1 keys to display

Page usage agreements

OAuth 2.0 Client IDs

O Name Creation date &

No OAuth clients to display

Service Accounts

O ema Name

No service accounts to display

<

Restrictions

Type

CONFIGURE CONSENT SCREEN

Actions.

Client ID Actions.

Manage service accounts

Actions.

_images/step7.png
Vault Vision Project v Q Search Products, resources, docs (/)

API APIs & Services Edit app registration <1
« Enabled APIs & services @ OAuthconsent screen — @) Scopes — @) Testusers — @ Summary
W Ubrary
o Credentials ‘Scopes express the permissions you request users to authorize for your

app and allow your project to access specific types of private user data

ot coneent sereen from their Google Account. Leam more

Domain verification ADD OR REMOVE SCOPES

Page usage agreements

Your non-sensitive scopes

AP ‘Scope User-facing description

No rows to display

& Your sensitive scopes

‘Sensitive scopes are scopes that request access to private user data.

AP ‘Scope User-facing description

No rows to display

@ Your restricted scopes

Restricted scopes are scopes that request access to highly sensitive user data.

<l AP ‘Scope User-facing description

_images/step8.png
Edit app registraion — APs &Se. X+

C @ consolecloudgoogle.com

Google Cloud Platform g Vault Vision Project [NV EIEET IS

API APIs & Services Edit app registratio
y Only scopes for enabled AP are listed below. To add a missing scope to this screen, find and enable
. the API inthe Google API Library or use the Pasted Scopes text box below. Refresh the page to see any
<+ Enabled APIs & senvices @ OAuth consent s¢ new APIs you enable from the Library
W Ubrary y
= Filter En 1ame or value ()
& cmerh Scopes express the |
appandallowyourd e scope User tacing description
J— from their Google Ac
consentscsen authyuserinfo,emai yay primary Google Account email address
Domain verfication oD auth/userinfo.prof

Page usage agreements

a

<Jou with your personal info on Google

2uthybigquer w and manage your data in Google BigQuery and see

mail address for your Google Account

Your non-sensi

loud data and

auth/cloud-pla See, edit, configure, and delete your Goog|

APl see the email address for your Google Account.

RN seof

No rows to display

authybigquer

in Google BigQuery

BigQuen
APl

@ Your sensitiv

see the email address for your Google Account

0O 0O o oo o o

Sensitve scopes are sa - e your data in Google Clo
APl
RN seof
Bigauery Manage your data in Cloud Storage and see the emil
No rows to display API address of your Google Account

R page 10w

100f25 < >

@ Your restrictt Manually add scopes

Restricted scopesares| | the scopes you would like to add do not appear i the table above, you can enter them here. Each scope should be on
anew line or separated by commas. Please provide the full scope string (beginning with “https://"). When you are
a AP Sog| finished, click "Add to table”

_images/step5.png
Outh

c

Google Cloud Platform $e Vauit Vision Project v Q Search Products, resources, docs (/)

API APIs & Services OAuth consent screen

% Enabled APIs & services Choose how you want to configure and register your app,

including your target users. You can only associate one app

i Library with your project.

o Credentials

User Type
OAuth consent screen O intemal @
Domain verification Only available to users within your organization. You will not
need to submit your app for verification. Learn more about
Page usage agreements Leer type

@® External @

Available to any test user with a Google Account. Your app
will start in testing mode and will only be available to users
you add to the list of test users. Once your app is ready to
push to production, you may need to verify your app. Learn
more about user type

Let us know what you think about our OAUth experience

<

Learn

Google OAuth consent screen

What is the OAuth consent screen?
What are OAuth consent scopes?
What are sensitive APl scopes?

What are restricted API scopes?

The app registration process

What information do | need?

Will my app need to be verified by Google?
What if | don't verify my app?

How long does the verification process take?
How many users can use my app?

Domain verification

What else should | review?

>

_images/step6.png
c

Vault Vision Project v Q Search Products, resources, docs (/)
API APIs & Services Edit app registration Learn >
«f» Enabled APIs & services @ oOAuthconsentscreen — @) Scopes — @) Testusers

How is this info presented to users?
B Library — @ summary This is the consent screen that users see

or Credentials
G sign in with Google

OAuth consent screen App information [
Domain verffication This shows in the consent screen, and helps end users know who you are and
contact you
Page usage agreements)) [Display Name] wants access
(20 e | to your Google Account

‘The name of the app asking for consent

\ User support email - \ oSeIect what [Display Name] can access

(m]

For users to contact you with questions about their consent

[app1og0 srowse |

Upload an image, not larger than 1M8 on the consent screen that will nelp o
users recognize your app. Allowed image formats are JPG, PNG, and BMP.

Make sure you trust [Display Name]
Logos should be square and 120px by 120px for the best resuts

App domain

To protect you and your users, Google only allows apps using OAuth to use o e
Authorized Domains. The following information will be shown to your users
onthe consent screen.

Application home page Cancel Allow

Frovide users a link o your home page
<

_images/vv-manage-popin-sandbox.png
Created just for you!

Explore a pre-created tenant and working application in
your own dev sandbox.

This is the best way to see the platform work
interactively, right now!

Your Dev Tenant:
dev-etshha.vvkey.io

©0 Unlimited Access
 Explore User Creation
 Try differnt login credentials

+ Customize with your logo

‘@ Open Sandbox in a New Window
&, Display .env file

_images/vv-sandbox-logged-in.png
= DEV-ETSHHA (<]

Vault Vision Interactive Sandbox

This generic application is built to show you the features of the Vault Vision
authentication platform and how it performs user authentication and user
management. Explore features like creating new user accounts, login/logout as
different users, upload your logo, block and reset users, AND get a feel for how much
development time you save

TAKE VAULT VISION FOR A TEST DRIVE IN THIS INTERACTIVE
DEVELOPMENT SANDBOX

The development sandbox is made up of 2
components

This Sandbox Auth Provider

(where you are now) (by Vault Vision)

https://dev-etshha.vvapp.io | https://dev-etshha.vvkey.io

LoGouT

Logout to switch between acccounts and to see the differences
between the view of a logged in user vs a logged out user.

USER SETTINGS

On your settings page you can update your name, email and
password. You can also add more login options like passkeys,
FIDO token, and multiple social identities. Multiple credential
types can be tied to a single account.

_images/step9.png
<

APIs & Services

Enabled AP & services
Library

Credentials

OAuth consent screen
Domain verfication

Page usage agreements

Vault Vision Project v Q Search Products, resources, docs (/)

Edit app registration

@& OAuth consentscreen — & Scopes — @) Testusers — @ Summary

Test users
While publishing status is set to "Testing’, only test users are able to access

the app. Allowed user cap prior to app verification is 100, and is counted over
the entire lifetime of the app. Learn more

<+ ADD USERS

Fiter Enter property name or value o

User information

No rows to display

SAVEAND CONTINUE) CANCEL

_images/vv-manage-popin-sandbox-env.png
Created just for you! .

Explore a pre-created tenant and working application in
your own dev sandbox.

This is the best way to see the platform work
interactively, right now!

Your Dev Tenant:
dev-etshha.vvkey.io

Environment Variables

VV_ISSUER_URL="https://dev-etshha.vvkey.test"
VV_CLIENT_ID="clien

Download

Sandbox in a New Window

&, Display .env file

_images/vv-sandbox.png
= DEV-ETSHHA (<]

Vault Vision Interactive Sandbox
This generic application is built to show you the features of the Vault Vision
authentication platform and how it performs user authentication and user
management. Explore features like creating new user accounts, login/logout as
different users, upload your logo, block and reset users, AND get a feel for how much
development time you save.

TAKE VAULT VISION FOR A TEST DRIVE IN THIS INTERACTIVE
DEVELOPMENT SANDBOX

The development sandbox is made up of 2
components

This Sandbox Auth Provider

(where you are now) (by Vault Vision)

https://dev-etshha.vvapp.io | https://dev-etshha.vvkey.io

mains)

SIGNUP

Explore signing up new user accounts below, try types of
credentials like passwords and OAuth social identities.

LOGIN

Explore different logins below, use different accounts and
different methods like: password, passkey(NEW), and social
identies like Google or Microsoft.

_images/vv-sandbox-options.png
CUSTOM LOGO

Customize your login and signup screens with your own logo for
more brand awareness. Once uploaded, it will show up here and
on your login pages.

USER MANAGEMENT

See all your users, create new users, delete or block problem
users, or help reset a credential for a user that has lost their's.

DASHBOARD

See daily metrics like counts of new user signups, number of
successful logins and failed logins.

b

CREATE A 2ND APPLICATION

Add another application that your existing users can access,
maybe a new mobile app or website. Our platform makes it easy
to add multiple applications for a single user base.

CREATE A NEW TENANT ON YOUR BRANDED DOMAIN

Create a new tenant with a new user store. Organize different
sets of users into their separate tenants. This feature allows you
to maintain separate sets of users for different applications.

_static/minus.png

_static/plus.png

_static/file.png

