
Vault Vision Documentation
Release 1.1

Vault Vision

Sep 15, 2023

GUIDES

1 Quick Start - Vault Vision 3
1.1 Create an Account at Vault Vision . 3
1.2 Try out your development sandbox . 3
1.3 Run your own example application locally . 10
1.4 Testing your local example . 13

2 Tenants - Vault Vision 15
2.1 Properties . 15
2.2 Actions . 17

3 Applications - Vault Vision 19
3.1 Properties . 19
3.2 Actions . 20

4 Users - Vault Vision 21
4.1 Properties . 21
4.2 Actions . 21

5 User Authentication Concepts - Vault Vision 23
5.1 Typical OIDC Application to Authentication Provider Flow Strategy and Diagrams 23
5.2 Step 1 . 23
5.3 Step 2 . 24

6 Reference - Vault Vision 25
6.1 Typical OIDC Application to User Auth Provider Flow Diagrams 25
6.2 Step 1 . 25
6.3 Step 2 . 26

7 Express Migration Steps - Vault Vision 27
7.1 Step 1 . 27
7.2 Step 2 - Create an Account at Vault Vision . 27
7.3 Step 3 - Update the application to use the determined URLs . 27
7.4 Step 4 add the OIDC open source client library . 27
7.5 Step 5 copy the environment variables . 27
7.6 Step 6 create a OIDC client using the open source library . 28
7.7 Step 7 create a login route . 28
7.8 Step 8 create a logout route . 29
7.9 Step 9 create a callback route . 29
7.10 Step 10 import users, and assign a new forigen key . 30
7.11 Step 11 update any session creation and tear down . 30

i

8 API Reference - Vault Vision 31
8.1 Overview . 31
8.2 Paths . 33
8.3 Examples . 48

9 API Keys - Vault Vision 53
9.1 Overview . 53
9.2 Guide - Creating Global API Keys . 54

10 Custom Domains - Vault Vision 65
10.1 Step 1 . 65
10.2 Step 2 . 65
10.3 Step 3 . 65

11 Identity Providers - Vault Vision 67
11.1 What is an Identity Provider? . 67
11.2 Options . 67
11.3 How to register as an application with Google . 67

12 Custom Branding Designer - Vault Vision 81
12.1 With our custom branding designer you will be able to set a custom image for your authentication pages 81
12.2 Image requirements . 82
12.3 Custom Branding Designer Management Page . 83

13 NoCode HTML and JS AirTable Toolkit - Vault Vision 85
13.1 With our NoCode HTML and JS Toolkit you will be . 85

14 ID Tokens, Access Tokens, UserInfo - Vault Vision 87
14.1 ID Tokens . 87
14.2 Access Tokens . 89
14.3 UserInfo . 89

ii

Vault Vision Documentation, Release 1.1

Vault Vision is a user authentication and login management platform whose passwordless technology is powered by
authentication software and devices enables easier authentication system integration for startup developers, IT security
teams and seamless security for end users.

Note: If you have any issues and need support here are the following channels:

• Discord

• Email: support@vaultvision.com

GUIDES 1

https://vaultvision.com
https://discord.gg/VcSdzmN2dX

Vault Vision Documentation, Release 1.1

2 GUIDES

CHAPTER

ONE

QUICK START - VAULT VISION

This Vault Vision setup guide will get your user authentication and login management system up and running in less
than a minute.

1.1 Create an Account at Vault Vision

Navigate to Register and create an account.

1.2 Try out your development sandbox

Each Vault Vision account is provisioned a development sandbox Tenant during registration. You will see the image
below right after you signup or you can access it again by just visiting the Management Panel:

3

https://manage.vaultvision.com/register
https://manage.vaultvision.com

Vault Vision Documentation, Release 1.1

Click the “Open Sandbox in a New Window” button to load the example application running on our servers:

4 Chapter 1. Quick Start - Vault Vision

Vault Vision Documentation, Release 1.1

1.2. Try out your development sandbox 5

Vault Vision Documentation, Release 1.1

Click signup to create your first User. You can then test logging out or updating your settings:

6 Chapter 1. Quick Start - Vault Vision

Vault Vision Documentation, Release 1.1

1.2. Try out your development sandbox 7

Vault Vision Documentation, Release 1.1

Feel free to explore the other options in the sandbox before moving on:

8 Chapter 1. Quick Start - Vault Vision

Vault Vision Documentation, Release 1.1

1.2. Try out your development sandbox 9

Vault Vision Documentation, Release 1.1

1.3 Run your own example application locally

We provide example auth applications written in Node, Go and Python with more to come.

Note: Our system is built on open protocols that support every programming language. Get in touch with us if you
would like support integrating with a programming language we don’t currently provide an example for.

1.3.1 Get your configuration values

Access the development sandbox popin again by visiting the Management Panel and click the “Display .env file” button
to get your configuration values for our open source example projects. Download or copy it locally into a file named
.env, we will use it in the examples we configure next:

10 Chapter 1. Quick Start - Vault Vision

https://vaultvision.com/contact-us/
https://manage.vaultvision.com

Vault Vision Documentation, Release 1.1

1.3.2 Run the Go auth example

Get the source code from the go-auth-example repository:

git clone https://github.com/vaultvision/go-auth-example
cd go-auth-example

Configure the app by placing the .env file we obtained previously into the root of the repo folder:

vi .env

Run the example on localhost:

1.3. Run your own example application locally 11

https://github.com/vaultvision/go-auth-example

Vault Vision Documentation, Release 1.1

go run main.go

Visit http://localhost:8090 in your browser.

1.3.3 Run the Node auth example

Get the source code from the node-auth-example repository:

git clone https://github.com/vaultvision/node-auth-example
cd node-auth-example

Configure the app by placing the .env file we obtained previously into the root of the repo folder:

vi .env

Install dependencies:

npm install

Run the example on localhost:

npm run dev

Visit http://localhost:8090 in your browser.

1.3.4 Run the Python auth example

Get the source code from the python-auth-example repository:

git clone https://github.com/vaultvision/python-auth-example
cd python-auth-example

Configure the app by placing the .env file we obtained previously into the root of the repo folder:

vi .env

Install dependencies:

python -m venv .venv # Or python3 for some systems
.venv/bin/pip install --upgrade pip
.venv/bin/pip install -r requirements.txt

Run the example on localhost:

.venv/bin/python app.py

Visit http://localhost:8090 in your browser.

12 Chapter 1. Quick Start - Vault Vision

http://localhost:8090
https://github.com/vaultvision/node-auth-example
http://localhost:8090
https://github.com/vaultvision/python-auth-example
http://localhost:8090

Vault Vision Documentation, Release 1.1

1.3.5 Run the React js boilerplate example

Note: Prefer to watch a video?

React application user authentication setup

• clone this github repo containing our React js boilerplate project https://github.com/vaultvision/
react-boilerplate-vv

• Copy over the env vars from the Vault Vision Management Panel into a NEW .env file located at the root of the
project. You can copy this file as an example https://github.com/vaultvision/react-boilerplate-vv/blob/master/
.env-example , or simply rename it .env and populate it with your correct env vars.

• Run the npm start command to launch a local instance

npm run start

1.3.6 Run the HTML boilerplate example

• clone this github repo containing our HTML boilerplate project https://github.com/vaultvision/html-boilerplate

• Copy over the env vars from the Vault Vision Management Panel into one of these files: https:
//github.com/vaultvision/html-boilerplate/blob/main/src/scripts-init/oidcAppRouter.js or https://github.com/
vaultvision/html-boilerplate/blob/main/src/scripts-init/oidcbinding.js

• Run the npm start command to launch a local instance

npm run start

1.4 Testing your local example

With your local example running you can now see how you can use the same credentials to login to multiple applica-
tions hosted on different domains written in entirely different programming languages. Feel free to explore multiple
programming languages using the same .env file.

1.4. Testing your local example 13

https://www.youtube.com/watch?v=K7It1YuXyBc
https://github.com/vaultvision/react-boilerplate-vv
https://github.com/vaultvision/react-boilerplate-vv
https://manage.vaultvision.com/go#applications
https://github.com/vaultvision/react-boilerplate-vv/blob/master/.env-example
https://github.com/vaultvision/react-boilerplate-vv/blob/master/.env-example
https://github.com/vaultvision/html-boilerplate
https://manage.vaultvision.com/go#applications
https://github.com/vaultvision/html-boilerplate/blob/main/src/scripts-init/oidcAppRouter.js
https://github.com/vaultvision/html-boilerplate/blob/main/src/scripts-init/oidcAppRouter.js
https://github.com/vaultvision/html-boilerplate/blob/main/src/scripts-init/oidcbinding.js
https://github.com/vaultvision/html-boilerplate/blob/main/src/scripts-init/oidcbinding.js

Vault Vision Documentation, Release 1.1

14 Chapter 1. Quick Start - Vault Vision

CHAPTER

TWO

TENANTS - VAULT VISION

Tenants are the center hub of Vault Vision’s user authentication platform. It is the core entity that holds all your users,
application links, and unique branding and authentication settings.

2.1 Properties

Domain - This is the domain for your auth platform, this is where your signup and login pages will live. This is what
will show in the users address bar when signing up or logging in to your services. Once set, this can not be changed
without contacting support. This is because your users are familiar with where they signed up, and any changes need
to be communicated and coordinated with them so that they understand where and how they are authenticating for your
service.

Note: Custom Domains If you choose a custom domain for your tenant, something like auth.mycompany.com, then
you will need to make sure you create a DNS CNAME record for that custom domain (auth.mycompany.com in this
example) to point to nextgenauth.vaultvision.com

This is how you will connect your custom domain to our services

Company Name - This is usually just your company name. It is the name that you can use to identify yourself to end
users. We will default to this name when sending system messages and emails.

Support Email - This is the email address we will show to your end users so they can reach out for support if needed.
Usually displayed in either system messages or if an error condition arises.

Support URL - This is the website URL we will show to your end users so they can reach out for support if needed.
Usually displayed in either system messages or if an error condition arises. Additionally, this is where we will send
end users that need more help during signup or login.

Terms of Service URL - This is the link to your terms of service for your web application. We show this link on your
signup page and require that your end users agree to it during signup.

Terms of Service Version - This is the version of your terms of service that we record when a users signs up for your
service. At signup, after they agree to the terms of service, we will record which version of the terms they agreed to
based on what is currently set in this field for your tenant. When you update your terms of service you should update
this version number as well so that we will maintain accurate records of what version users agreed to when they signed
up.

Privacy Policy URL - This is the link to your privacy policy for your company. We show this link on your signup page
and require that your end users agree to it during signup.

Privacy Policy Version - This is the version of your privacy policy that we record when a users signs up for your
service. At signup, after they agree to the privacy policy, we will record which version of the policy they agreed to

15

https://vaultvision.com

Vault Vision Documentation, Release 1.1

based on what is currently set in this field for your tenant. When you update your privacy policy you should update this
version number as well so that we will maintain accurate records of what version users agreed to when they signed up.

Email Verification Delay (seconds) - If you have email verification disabled for users, you can use this setting to add a
verification delay. This delay happens after a user signs up. This delay is useful for reducing the initial friction when a
user signs-ups. By disabling email verification AND setting this delay value, your new user sign-ups won’t be required
to verify their email until then next time they login after the delay duration has passed. A typical use case is to set this
to 60 seconds so that the first time a user signs-up, they won’t be blocked with a requirement to verify their email, yet
on any logins that happen after 60 seconds later will block the user from completing sign-in until they have verified
their email by entering the code sent to them. Setting this value to 0 will completely remove all email verification
requirements. If you never want to verify your user’s email, set this to 0.

Login Session Persistence Lifetime (seconds) - This is the duration of the users login session. This controls the
lifetime and expiration time of the login cookie. While this lifetime is active and the user’s browser has an un-expired
login cookie, the user will be authenticated and will not be prompted to login, they will redirected back to the application
with the new valid login tokens. When this lifetime expires, any new authentication requests will prompt the user to
login again. Setting this value will make the browser remember the users login session even if they close and re-open
the browser. Setting this to 0 will make the users login session not be remembered after they close the browser. Setting
this to 0 will make the login cookie a session cookie that will disappear when the browser is closed. Login sessions are
always destroyed on logout.

MFA/TOTP Session Persistence Lifetime (seconds) - This is the duration of the user’s MFA/TOTP remembered
session. When a users enters their TOTP code in their MFA login flow, if they choose to ‘Remember Me’, their 2nd
factor will be remembered on their device for this duration. This means that the next time the users authenticates, if the
MFA/TOTP is still active, they will not be prompted for their MFA/TOTP code again. A typical use case for this setting
is to combine it with a shorter ‘Login Session Persistence Lifetime’ so you get the benefit of frequent re-authentications,
yet only prompt for the MFA/TOTP on a new device or after a very long time. Typical values would be 30 days for an
‘MFA/TOTP Session Persistence Lifetime’ and only 24 hours for ‘Login Session Persistence Lifetime (seconds)’. This
way users authenticate each day, but only have to enter their MFA/TOTP code once a month. MFA/TOTP sessions are
always destroyed on logout.

Allow Password Logins - This is setting determines whether users will be able to authenticate using a password.
Disabling this will mean users can no longer use a password to login, they will need to use either social logins, or
passkey/security keys.

Allow Social Logins - This is setting determines whether users will be able to authenticate using social logins like
Google, Apple, Microsoft. Disabling this will mean users can no longer use a social login, they will need to use either
password, or passkey/security keys.

Allow Security Key Logins - This is setting determines whether users will be able to authenticate using WebAu-
thn/FIDO authenticators, including passkey. Disabling this will mean users can no longer use passkey or security keys
to login, they will need to use either password, or social logins.

Allow TOTP Authenticator Apps - This is setting determines whether users are able to add a TOTP authenticator
app as a 2nd factor to their password. Disabling this will block users from adding a TOTP authenticator app, and could
break logins for users that had already added one to their account.

Allow TOTP via Email Code - This is setting determines whether users are able to use email to get a TOTP code as
a 2nd factor to their password. Disabling this will block users from using their email as a method to receive a TOTP
code.

Disable Email Verification for Users - This is setting determines whether users are required to verify their email
address after signing up and logging in. If you ‘Disable Email Verification’, users will be able to signup and login
without being blocked to enter a code that is sent to their email address. This verification can also be delayed by setting
a delay in the ‘Email Verification Delay’ setting. If you never want to a user to be required to verify their email, check
this ‘Disable Email Verification’ setting and set ‘Email Verification Delay’ to 0.

Require Multi-Factor Authentication (MFA) - This is setting determines whether users are required to use
MFA/TOTP codes with their passwords. When required, users on signup and login will be required to enter a TOTP

16 Chapter 2. Tenants - Vault Vision

Vault Vision Documentation, Release 1.1

code either from a TOTP authenticator app (if allowed by the setting above) or from a email (if allowed by the set-
ting above) sent to their email address. This setting only requires a TOTP code for password logins. This setting has
no impact on social and passkey/security keys, those login types do not use TOTP MFA (this will be an option soon
though.)

Developer Mode - This is setting determines whether helpful debug messages are shown on your auth tenant. Enabling
this will give helpful tips on setting the proper callback urls for your application and solving other mis-configurations.
Typically, you will only want to enable this during setup or troubleshooting, as it will show debug messages that will
only make sense to you and not to your users.

Allow Public Signups - This is setting determines whether users can register themselves. When enabled, users will be
able to create their own accounts using the registration signup page. When disabled, the registration signup page does
not exist, and only tenant admins will be able to create new user accounts. This is typically used for systems that are
internal to a company or is for employee’s only and NOT for the general public.

Require New Users to be Approved by Admin - This is setting determines whether new users are automatically
disabled/blocked on creation. This is useful if you want users to self-register but not gain access until they are approved
by the tenant admin.

Logo - This is the image that will be displayed on your signup and login pages. It will also be used in emails and system
messages.

2.2 Actions

None currently

2.2. Actions 17

Vault Vision Documentation, Release 1.1

18 Chapter 2. Tenants - Vault Vision

CHAPTER

THREE

APPLICATIONS - VAULT VISION

Note: OAuth Client An Application in our Vault Vision parlance is synonymous with an OAuth Client. Our Vault
Vision service provides the OAuth identity authentication for your OAuth Client Applications.

3.1 Properties

Application Name - This name that will refer to the application you are configuring to be linked to your tenant. It is
only for management purposes and is never displayed to an end user.

Callback URLs - At the initiation of the user authentication process, your service will redirect a user to our login page
with a special callback redirect uri that you specify in the querystring of that 302 redirect. After our auth platform
authenticates that user, we check if the callback redirect uri that was specified in the querystring matches a Callback
URL set here in the Application setting screen. If there is a match, then our auth platform will call the specified callback
redirect uri and it will pass the OAuth token. On the service handler for this callback, that is hosted on your system,
you will validate that OAuth token using our token endpoint and a signed JWT with the users idenity embedded in it
will be generated and returned. This JWT can then be used to further authenticate the user in additional service calls.
Usually this URL is located as something like: https://yoursite.com/auth/callback

Login URL - This this the URL that our auth platform will redirect unauthenticated users to so that a new user au-
thentication process can be initiated by your application. The handler for this URL should generate a redirect to our
authorize endpoint (‘/authorize’) on your tenant domain hosted on our systems. As part of that redirect, the Application
client_id and callback redirect uri need to be included in the query string. Usually this URL is located as something
like: https://yoursite.com/login

Logout URLs - At the initiation of the user logout process, your service will redirect a user to our logout handler with a
special callback redirect uri that you specify in the querystring of that 302 redirect. After our auth platform ends all the
sessions for that user, we check if the callback redirect uri that was specified in the querystring matches a Logout URL
set here in the Application setting screen. If there is a match, then our auth platform will call the specified callback
redirect uri so that your application can finish any remaining session closures if needed. In most cases, applications
will usually remove any user sessions prior to initiating a user logout process, and in those cases, this Logout URL can
simply be the home page, or whatever page you want to drop off newly logged out users. Usually this URL is located
as something like: https://yoursite.com/loggedout

19

Vault Vision Documentation, Release 1.1

3.2 Actions

Edit - Using this action you can view or changes the URL and Name properties for your application.

Delete - This action will delete the Application and it will no longer be able to authorize or validate OAuth tokens or
JWTs.

20 Chapter 3. Applications - Vault Vision

CHAPTER

FOUR

USERS - VAULT VISION

4.1 Properties

Name - This name that will refer to the user in this tenant. It does not have to be unique and will be used for system
and email messages to the User.

Email - This is the email address for the user, and must be unique inside each tenant. There can not be two users in the
same tenant using the same email, it is akin to a username, and is the unique identifier for a user account.

Password - This is the password credential users provide to authenticate themselves. Setting this Password field for a
user that currently has a FIDO security key credential assigned as the account credential, will cause that FIDO security
key credential to be removed from the user account and it will be replaced by the password set in this field.

4.2 Actions

Update - The user’s name can be updated

Block/Unblock - Blocking a use will cause them to be blocked from authenticating, meaning they won’t be able to
login anymore. This can be undone by Unblocking the user.

Delete - This will remove the user from the tentant, they will no longer be able to login and if they re-register, they will
have a different id and user account.

21

Vault Vision Documentation, Release 1.1

22 Chapter 4. Users - Vault Vision

CHAPTER

FIVE

USER AUTHENTICATION CONCEPTS - VAULT VISION

5.1 Typical OIDC Application to Authentication Provider Flow Strat-
egy and Diagrams

When implementing an OIDC Application to integrate with an Auth Provider, there are the following six implementa-
tion flows to consider. Two flows each for: signup, login, logout

• User starting a signup from the Application

• User starting a login from the Application

• User starting a logout from the Application

• Auth Provider redirecting the user back to the Application with the OIDC authentication payload after a successful
signup or login

• Auth Provider redirecting the user back to the Application after a successful logout

• Auth Provider redirecting the user back to the Application when the Auth Provider did not receive the proper
login request. The Auth Provider needs to know a URL on the Application where the user can see a login button
and can restart a user login request

5.1.1 Login Flow Diagram

5.2 Step 1

Decide the URL locations for these 3 endpoints on your website:

• callback (route location on your website where our services will redirect authenticated users to with an OAuth
token)

– Usually something like: https://yoursite.com/callback

• login (route location on your website where we will redirect unauthenticated users to so that you can redirect
them back with the proper login intitation request paramters, like your client_id and callback URL)

– Usually something like: https://yoursite.com/login

– This is not required, but without it we don’t know where to send a user if they bookmarked our page or
followed a link to the login that did not come from your login redirect.

23

Vault Vision Documentation, Release 1.1

• logout (route location on your website where we will redirect users to AFTER they have logged out and we have
removed their session)

5.3 Step 2

Update the URL values in the Vault Vision Management Panel for your application.

24 Chapter 5. User Authentication Concepts - Vault Vision

https://manage.vaultvision.com/go#applications

CHAPTER

SIX

REFERENCE - VAULT VISION

6.1 Typical OIDC Application to User Auth Provider Flow Diagrams

When implementing an OIDC Application to integrate with an Auth Provider, there are the following 6 flows to consider.
2 flows each for: signup, login, logout

• User starting a signup from the Application

• User starting a login from the Application

• User starting a logout from the Application

• Auth Provider redirecting the user back to the Application with the OIDC authentication payload after a successful
signup or login

• Auth Provider redirecting the user back to the Application after a successful logout

• Auth Provider redirecting the user back to the Application when the Auth Provider did not receive the proper
login request. The Auth Provider needs to know a URL on the Application where the user can see a login button
and can restart a user login request

6.2 Step 1

Decide the URL locations for these 3 endpoints on your website:

• callback (route location on your website where our services will redirect authenticated users to with an OAuth
token)

– Usually something like: https://yoursite.com/callback

• login (route location on your website where we will redirect unauthenticated users to so that you can redirect
them back with the proper login intitation request paramters, like your client_id and callback URL)

– Usually something like: https://yoursite.com/login

– This is not required, but without it we don’t know where to send a user if they bookmarked our page or
followed a link to the login that did not come from your login redirect.

• logout (route location on your website where we will redirect users to AFTER they have logged out and we have
removed their session)

25

Vault Vision Documentation, Release 1.1

6.3 Step 2

Update the URL values in the Vault Vision Management Panel for your application.

26 Chapter 6. Reference - Vault Vision

https://manage.vaultvision.com/go#applications

CHAPTER

SEVEN

EXPRESS MIGRATION STEPS - VAULT VISION

7.1 Step 1

Determine the 3 routes that will be used to:

• Start a login (usually something like /login)

• Start a logout (usually something like /logout)

• Receive the user after a successful signup or login (usually something like /oidc/auth_callback)

7.2 Step 2 - Create an Account at Vault Vision

Create an account at this Register location. Register

Configure the Vault Vision tenant and application. Navigate to Getting Started

7.3 Step 3 - Update the application to use the determined URLs

Update the URL values in the (Vault Vision Management Panel)[https://manage.vaultvision.com/go#applications] for
your application.

7.4 Step 4 add the OIDC open source client library

npm install openid-client

7.5 Step 5 copy the environment variables

Copy over the env vars from the (Vault Vision Management Panel)[https://manage.vaultvision.com/go#applications]
into your react application, something like:

const appHostUrl = process.env.APP_HOST_URL;
const tenantFqdn = process.env.TENANT_FQDN;
const post_authorize_redirect = process.env.POST_AUTHORIZE_CALLBACK; //configure this in␣
→˓authorized web app redirect uris
const post_logout_callback = process.env.POST_LOGOUT_CALLBACK;

(continues on next page)

27

https://manage.vaultvision.com/register
https://manage.vaultvision.com/start

Vault Vision Documentation, Release 1.1

(continued from previous page)

const tenantUrl = "https://" + tenantFqdn;
const redirect_uri = appHostUrl + post_authorize_redirect;
const post_logout_redirectUrl = [appHostUrl + post_logout_callback];
const client_id = process.env.CLIENT_ID;
const client_secret = process.env.CLIENT_SECRET;

7.6 Step 6 create a OIDC client using the open source library

Issuer.discover(tenantUrl).then((vaultVisionIssuer) => {
console.log('Discovered issuer %s %O', vaultVisionIssuer.issuer, vaultVisionIssuer.

→˓metadata);

client = new vaultVisionIssuer.Client({
client_id: client_id,
client_secret: client_secret,
redirect_uris: [redirect_uri],
response_types: ['code'],
// id_token_signed_response_alg (default "RS256")
// token_endpoint_auth_method (default "client_secret_basic")

});

});

7.7 Step 7 create a login route

Something similar to

// create the login get and post routes
app.get('/login', (req, res) => {

console.log('Inside GET /login callback function')
console.log(req.sessionID)

const nonce = generators.nonce();
const state = generators.state();
const code_verifier = generators.codeVerifier();
req.session.code_verifier = code_verifier
req.session.nonce = nonce
req.session.state = state

const code_challenge = generators.codeChallenge(code_verifier);

let redirectURL = client.authorizationUrl({
scope: 'openid email profile',
resource: redirect_uri,
code_challenge,
code_challenge_method: 'S256',
nonce: nonce,
state: state,

(continues on next page)

28 Chapter 7. Express Migration Steps - Vault Vision

Vault Vision Documentation, Release 1.1

(continued from previous page)

});
console.log("redirctURL: " + redirectURL)
res.redirect(redirectURL)

})

7.8 Step 8 create a logout route

app.get('/logout', (req, res) => {
res.clearCookie("jwt");
res.redirect('/');

})

7.9 Step 9 create a callback route

app.all(post_authorize_redirect, (req, res) => {
console.log('Inside GET /postauthorize callback function')
console.log("request session id: " + req.sessionID)
const params = client.callbackParams(req);
console.log(params);
client.callback(
redirect_uri,
params,
{
code_verifier: req.session.code_verifier,
state: req.session.state,
nonce: req.session.nonce,

}
)
.then((tokenSet) => {
req.session.sessionTokens = tokenSet;
req.session.claims = tokenSet.claims();
console.log('received and validated tokens %j', tokenSet);
console.log("-------")
console.log('validated ID Token claims %j', tokenSet.claims());

if (tokenSet.access_token) {
client.userinfo(tokenSet.access_token)
.then((userinfo) => {
req.session.userinfo = userinfo
userLookup[userinfo.sub] = userinfo.name
console.log("userinfo")
console.log(userinfo)

})
}

res.cookie("jwt", JSON.stringify(tokenSet.id_token), {
secure: false,

(continues on next page)

7.8. Step 8 create a logout route 29

Vault Vision Documentation, Release 1.1

(continued from previous page)

httpOnly: true,
expires: 0

});
res.redirect("/room.html");

})

})

7.10 Step 10 import users, and assign a new forigen key

Once users are imported into the Vault Vision tenant, take the returned table of users with the new assign Vault Vision
subscriberId and attach that as a forigen key into your user table.

7.11 Step 11 update any session creation and tear down

New user sessions should be created in the oidc callback, and destroyed in the start logout route.

30 Chapter 7. Express Migration Steps - Vault Vision

CHAPTER

EIGHT

API REFERENCE - VAULT VISION

8.1 Overview

Vault Vision provides all customers access to a REST based API. A quick summary:

• Request bodies are JSON-encoded

• Responses are also JSON-encoded

• Uses standard HTTP response codes (200, 400, . . .)

• Uses standard HTTP verbs (GET, POST, . . .)

• Authentication via API Keys (Authorization: Bearer $VV_API_KEY)

• The production endpoint is: https://api.vaultvision.com

Our goal is to provide comprehensive documentation. We will gladly accept pull requests at
github.com/vaultvision/docs or feel free to contact us directly with feedback / questions.

8.1.1 Authentication

All requests to the API must be authenticated with a secret API Key. You may create and manage your API Keys in
the management console, see our API Key creation guide here.

Secret API Keys have a prefix of "vv_" so they may be identified easily. Beyond that all characters are random, some
examples:

• vv_oFVTAiPkICpOewyuV2mINX1rSFxzdIkR

• vv_uAmkBd4nRsjFPBfsJFrmvNmKOMARrapZ

Note: Your secret API Keys must be kept secure, do not share your secret API keys in publicly accessible areas.

Secret keys are provided in the HTTP Authorization header as a bearer token. For example:

curl \
https://api.vaultvision.com/v1/tenants \
-X GET \
-H "accept: application/json" \
-H "authorization: Bearer vv_oFVTAiPkICpOewyuV2mINX1rSFxzdIkR"

31

https://vaultvision.com
https://en.wikipedia.org/wiki/Representational_state_transfer
https://www.json.org/json-en.html
https://www.json.org/json-en.html
https://github.com/vaultvision/docs
https://vaultvision.com/contact-us/
https://manage.vaultvision.com/apikeys

Vault Vision Documentation, Release 1.1

8.1.2 Metadata

Most updatable API objects have a metadata field you may use for storing arbitrary key-value data. You can use this
field for storing additional information directly on an object. For example you could store your systems own unique
ID’s for a given user on the User object to lookup after they login.

You can specify up to 20 keys, with key names up to 100 characters long and values up to 1000 characters long. Your
users won’t see metadata unless you show it to them.

Note: Don’t store any sensitive information in metadata.

8.1.3 Errors

Vault Vision uses conventional HTTP response status codes to indicate the success or failure of an API request:

• 2xx range indicate success.

• 4xx range indicate an error with the request.

• 5xx range indicate an error with the tenants configuration or in rare circumstances our infrastructure.

When a failure occurs we always return JSON objects containing additional information about errors. These errors
include a string “code” and a “uuid” you can supply our support with so we can lookup additional details about your
request. An example error for authentication failure:

{
"type": "Error",
"uuid": "a31680a3-663e-4693-9152-e2cc9a093811",
"code": "authentication_failure",
"status_code": 401

}

8.1.4 Update/Create Conventions

For updates and creates, we only support full object POST requests, meaning the entire object with all of it’s fields
and properties needs to be included in the request. To update a single field you should first fetch the latest version of
the object, modify it and post it back with all of it’s fields even if the fields are not changing. We ignore some system
managed fields like the id, created_at and updated_at fields. See each Object for more information about mutability.

It’s also worth noting that many fields are omitted when they are the zero-value or false for that type. For example
when a bool is false we often will omit that key from the response. This may change in a future release to give more
consistent experience across integrations. Omitted values should be assumed to be zero-value or false.

32 Chapter 8. API Reference - Vault Vision

Vault Vision Documentation, Release 1.1

8.2 Paths

The full list of request paths and API endpoints are organized below. The route parameters (tenant_id, user_id,
etc. . .) are always required, the ID in the request body/payload is ignored. Only the id provided in the URL as a route
parameter is used. Request paths which end with a single specific ID will return a single object, other requests paths
that end without a single specific ID will return a list of objects.

Tenants:

• GET /v1/tenants

• GET /v1/tenants/:tenant_id

• POST /v1/tenants/:tenant_id

Applications:

• GET /v1/tenants/:tenant_id/applications

• POST /v1/tenants/:tenant_id/applications

• GET /v1/tenants/:tenant_id/applications/:application_id

• POST /v1/tenants/:tenant_id/applications/:application_id

• DELETE /v1/tenants/:tenant_id/applications/:application_id

Users:

• GET /v1/tenants/:tenant_id/users

• POST /v1/tenants/:tenant_id/users

• GET /v1/tenants/:tenant_id/users/:user_id

• POST /v1/tenants/:tenant_id/users/:user_id

• DELETE /v1/tenants/:tenant_id/users/:user_id

User Credentials:

• GET /v1/tenants/:tenant_id/users/:user_id/credentials

• POST /v1/tenants/:tenant_id/users/:user_id/credentials

• GET /v1/tenants/:tenant_id/users/:user_id/credentials/:credential_id

• POST /v1/tenants/:tenant_id/users/:user_id/credentials/:credential_id

• DELETE /v1/tenants/:tenant_id/users/:user_id/credentials/:credential_id

8.2.1 GET /v1/tenants

Returns the list of tenants the current API Key has access to.

Request:

curl \
https://api.vaultvision.com/v1/tenants \
-X GET \
-H "accept: application/json" \
-H "authorization: Bearer $VV_API_KEY"

Response:

8.2. Paths 33

Vault Vision Documentation, Release 1.1

{
"type": "List",
"total": 2,
"count": 2,
"limit": 100,
"data": [

{
"type": "Tenant",
"id": "i1JfrfWIwQiQ",
"created_at": "2023-08-18T21:41:13.850608202Z",
"updated_at": "2023-08-18T21:41:13.850608202Z",
"settings": {
"domain": "dev-xbwlrp.vvkey.test",
"company_name": "Development Environment",
"logo_image_text": "dev-xbwlrp",
"allow_social": true,
"allow_hardware": true,
"allow_passwords": true,
"allow_totp_app": true,
"allow_totp_email": true,
"allow_unverified": true,
"remember_device": true,
"remember_device_seconds": 2592000,
"remember_login_seconds": 2592000,
"allow_signups": true,
"developer_mode": true

}
},
{
"type": "Tenant",
"id": "CmKJPDorO34hGJ0J",
"name": "acme01",
"created_at": "2023-08-18T15:11:28.708085985Z",
"updated_at": "2023-08-18T15:11:28.708085985Z",
"settings": {
"domain": "acme01.vvkey.test",
"company_name": "acme01",
"support_email": "support@acme01.test",
"allow_social": true,
"allow_hardware": true,
"allow_passwords": true,
"allow_totp_app": true,
"allow_totp_email": true,
"allow_unverified": true,
"remember_device": true,
"remember_device_seconds": 2592000,
"remember_login_seconds": 2592000,
"allow_signups": true

}
}

]
}

34 Chapter 8. API Reference - Vault Vision

Vault Vision Documentation, Release 1.1

8.2.2 GET /v1/tenants/:tenant_id

Get a specific tenant by ID.

Request:

curl \
https://api.vaultvision.com/v1/tenants/CmKJPDorO34hGJ0J \
-X GET \
-H "accept: application/json" \
-H "authorization: Bearer $VV_API_KEY"

Response:

{
"type": "Tenant",
"id": "CmKJPDorO34hGJ0J",
"name": "acme01",
"created_at": "2023-08-18T15:11:28.708085985Z",
"updated_at": "2023-08-18T15:11:28.708085985Z",
"settings": {
"domain": "acme01.vvkey.test",
"company_name": "acme01",
"support_email": "support@acme01.test",
"allow_social": true,
"allow_hardware": true,
"allow_passwords": true,
"allow_totp_app": true,
"allow_totp_email": true,
"allow_unverified": true,
"remember_device": true,
"remember_device_seconds": 2592000,
"remember_login_seconds": 2592000,
"allow_signups": true

}
}

8.2.3 POST /v1/tenants/:tenant_id

Update the tenant specified by tenant_id.

Request:

curl \
https://api.vaultvision.com/v1/tenants/CmKJPDorO34hGJ0J \
-X GET \
-H "accept: application/json" \
-H "authorization: Bearer $VV_API_KEY" \

| jq -r '. += {"metadata": {"mykey1":"myval1"}}' \
| curl \

https://api.vaultvision.com/v1/tenants/CmKJPDorO34hGJ0J \
-X POST \
-H "accept: application/json" \

(continues on next page)

8.2. Paths 35

Vault Vision Documentation, Release 1.1

(continued from previous page)

-H "authorization: Bearer $VV_API_KEY" \
-d@-

Response:

{
"type": "Tenant",
"id": "CmKJPDorO34hGJ0J",
"name": "acme01",
"created_at": "2023-08-18T15:11:28.708085985Z",
"updated_at": "2023-08-18T15:11:28.708085985Z",
"metadata": {
"mykey1": "myval1"

},
"settings": {
"domain": "acme01.vvkey.test",
"company_name": "acme01",
"support_email": "support@acme01.test",
"allow_social": true,
"allow_hardware": true,
"allow_passwords": true,
"allow_totp_app": true,
"allow_totp_email": true,
"allow_unverified": true,
"remember_device": true,
"remember_device_seconds": 2592000,
"remember_login_seconds": 2592000,
"allow_signups": true

}
}

8.2.4 POST /v1/tenants/:tenant_id/applications

Create a new application. An application is your OIDC client used to initiate and handle authentication callbacks.

Request:

echo '{
"type": "Application",
"name": "MyNewApp",
"login_url": "https://example.test/auth/login",
"logout_urls": [
"https://example.test/auth/logout"

],
"redirect_urls": [
"https://example.test/auth/callback"

]
}' | curl \

https://api.vaultvision.com/v1/tenants/CmKJPDorO34hGJ0J/applications \
-X POST \
-H "accept: application/json" \

(continues on next page)

36 Chapter 8. API Reference - Vault Vision

Vault Vision Documentation, Release 1.1

(continued from previous page)

-H "authorization: Bearer $VV_API_KEY" \
-d@-

Response:

{
"type": "Application",
"id": "37SenPbBds9q",
"name": "MyNewApp",
"created_at": "2023-08-18T23:08:56.256482702Z",
"updated_at": "2023-08-18T23:08:56.256482702Z",
"login_url": "https://example.test/auth/login",
"logout_urls": [

"https://example.test/auth/logout"
],
"redirect_urls": [
"https://example.test/auth/callback"

]
}

8.2.5 GET /v1/tenants/:tenant_id/applications

Request:

curl \
https://api.vaultvision.com/v1/tenants/CmKJPDorO34hGJ0J/applications \
-X GET \
-H "accept: application/json" \
-H "authorization: Bearer $VV_API_KEY"

Response:

{
"type": "List",
"total": 4,
"count": 4,
"limit": 100,
"data": [

{
"type": "Application",
"id": "J3Or5KNHIUDl",
"name": "MyNewApp",
"created_at": "2023-08-18T23:14:03.782059707Z",
"updated_at": "2023-08-18T23:14:03.782059707Z",
"secret": "4fZyeKjrJaBbFVeLzQy2TCsJ",
"login_url": "https://example.test/auth/login",
"logout_urls": [

"https://example.test/auth/logout"
],
"redirect_urls": [
"https://example.test/auth/callback"

(continues on next page)

8.2. Paths 37

Vault Vision Documentation, Release 1.1

(continued from previous page)

]
}

]
}

8.2.6 GET /v1/tenants/:tenant_id/applications/:application_id

Request:

curl \
https://api.vaultvision.com/v1/tenants/CmKJPDorO34hGJ0J/applications/J3Or5KNHIUDl \
-X GET \
-H "accept: application/json" \
-H "authorization: Bearer $VV_API_KEY"

Response:

{
"type": "Application",
"id": "J3Or5KNHIUDl",
"name": "MyNewApp",
"created_at": "2023-08-18T23:14:03.782059707Z",
"updated_at": "2023-08-18T23:14:03.782059707Z",
"secret": "4fZyeKjrJaBbFVeLzQy2TCsJ",
"login_url": "https://example.test/auth/login",
"logout_urls": [
"https://example.test/auth/logout"

],
"redirect_urls": [
"https://example.test/auth/callback"

]
}

8.2.7 POST /v1/tenants/:tenant_id/applications/:application_id

Request:

curl \
https://api.vaultvision.com/v1/tenants/CmKJPDorO34hGJ0J/applications/J3Or5KNHIUDl \
-X GET \
-H "accept: application/json" \
-H "authorization: Bearer $VV_API_KEY" \

| jq -r '. += {"metadata": {"mykey1":"myval1"}}' \
| curl \

https://api.vaultvision.com/v1/tenants/CmKJPDorO34hGJ0J/applications/
→˓J3Or5KNHIUDl \

-X POST \
-H "accept: application/json" \
-H "authorization: Bearer $VV_API_KEY" \
-d@-

38 Chapter 8. API Reference - Vault Vision

Vault Vision Documentation, Release 1.1

Response:

{
"type": "Application",
"id": "J3Or5KNHIUDl",
"name": "MyNewApp",
"created_at": "2023-08-18T23:14:03.782059707Z",
"updated_at": "2023-08-18T23:15:41.060329051Z",
"metadata": {
"mykey1": "myval1"

},
"secret": "4fZyeKjrJaBbFVeLzQy2TCsJ",
"login_url": "https://example.test/auth/login",
"logout_urls": [
"https://example.test/auth/logout"

],
"redirect_urls": [
"https://example.test/auth/callback"

]
}

8.2.8 DELETE /v1/tenants/:tenant_id/applications/:application_id

Delete returns the latest version of the deleted object before permanently removing it from the system, all future GET
requests are guaranteed to no longer return the object.

Request:

curl \
https://api.vaultvision.com/v1/tenants/CmKJPDorO34hGJ0J/applications/37SenPbBds9q \
-X DELETE \
-H "accept: application/json" \
-H "authorization: Bearer $VV_API_KEY"

Response:

{
"type": "Application",
"id": "37SenPbBds9q",
"name": "MyNewApp",
"created_at": "2023-08-18T23:08:56.256482702Z",
"updated_at": "2023-08-18T23:08:56.256482702Z",
"login_url": "https://example.test/auth/login",
"logout_urls": [

"https://example.test/auth/logout"
],
"redirect_urls": [
"https://example.test/auth/callback"

]
}

8.2. Paths 39

Vault Vision Documentation, Release 1.1

8.2.9 POST /v1/tenants/:tenant_id/users

Create a new user with no credentials, they will need to reset their password to login.

Request:

echo '{
"metadata": { "other_id": "other_id_01" },
"profile": {
"email": "test01@example.test",
"name": "Test User01",
"given_namename": "Test",
"family_name": "User01"

}
}' | curl \

https://api.vaultvision.com/v1/tenants/CmKJPDorO34hGJ0J/users \
-X POST \
-H "accept: application/json" \
-H "authorization: Bearer $VV_API_KEY" \
-d@-

Response:

{
"type": "User",
"id": "9cb0Q44OoPO4",
"created_at": "2023-08-21T15:04:24.344871427Z",
"updated_at": "2023-08-21T15:04:24.344871427Z",
"metadata": {
"other_id": "other_id_01"

},
"profile": {
"name": "Test User01",
"family_name": "User01",
"email": "test01@example.test"

}
}

8.2.10 GET /v1/tenants/:tenant_id/users

Request:

curl \
https://api.vaultvision.com/v1/tenants/CmKJPDorO34hGJ0J/users \
-X GET \
-H "accept: application/json" \
-H "authorization: Bearer $VV_API_KEY"

Response:

{
"type": "List",
"total": 1,

(continues on next page)

40 Chapter 8. API Reference - Vault Vision

Vault Vision Documentation, Release 1.1

(continued from previous page)

"count": 1,
"limit": 100,
"data": [
{
"type": "User",
"id": "9cb0Q44OoPO4",
"created_at": "2023-08-21T15:04:24.344871427Z",
"updated_at": "2023-08-21T15:06:43.49365588Z",
"metadata": {
"other_id": "other_id_01"

},
"profile": {
"name": "Test User01",
"family_name": "User01",
"email": "test01@example.test"

}
}

]
}

8.2.11 GET /v1/tenants/:tenant_id/users/:user_id

Get a user.

Request:

curl \
https://api.vaultvision.com/v1/tenants/CmKJPDorO34hGJ0J/users/9cb0Q44OoPO4 \
-X GET \
-H "accept: application/json" \
-H "authorization: Bearer $VV_API_KEY"

Response:

{
"type": "User",
"id": "9cb0Q44OoPO4",
"created_at": "2023-08-21T15:04:24.344871427Z",
"updated_at": "2023-08-21T15:13:47.787592127Z",
"metadata": {
"other_id": "other_id_01"

},
"profile": {
"name": "Test User01",
"family_name": "User01",
"email": "test01@example.test"

}
}

8.2. Paths 41

Vault Vision Documentation, Release 1.1

8.2.12 POST /v1/tenants/:tenant_id/users/:user_id

Update a user.

Request:

curl \
https://api.vaultvision.com/v1/tenants/CmKJPDorO34hGJ0J/users/9cb0Q44OoPO4 \
-X GET \
-H "accept: application/json" \
-H "authorization: Bearer $VV_API_KEY" \

| jq -r '. += {"metadata": {"other_id":"other_id_01"}}' \
| curl \

https://api.vaultvision.com/v1/tenants/CmKJPDorO34hGJ0J/users/9cb0Q44OoPO4 \
-X POST \
-H "accept: application/json" \
-H "authorization: Bearer $VV_API_KEY" \
-d@-

Response:

{
"type": "User",
"id": "9cb0Q44OoPO4",
"created_at": "2023-08-21T15:04:24.344871427Z",
"updated_at": "2023-08-21T15:13:47.787592127Z",
"metadata": {
"other_id": "other_id_01"

},
"verified_at": "2023-08-21T15:06:43.49365588Z",
"profile": {
"name": "Test User01",
"family_name": "User01",
"email": "test01@example.test",
"email_verified": true

}
}

8.2.13 DELETE /v1/tenants/:tenant_id/users/:user_id

Delete returns the latest version of the deleted object before permanently removing it from the system, all future GET
requests are guaranteed to no longer return the object.

Request:

curl \
https://api.vaultvision.com/v1/tenants/CmKJPDorO34hGJ0J/users/9cb0Q44OoPO4 \
-X DELETE \
-H "accept: application/json" \
-H "authorization: Bearer $VV_API_KEY"

Response:

42 Chapter 8. API Reference - Vault Vision

Vault Vision Documentation, Release 1.1

{
"type": "User",
"id": "9cb0Q44OoPO4",
"created_at": "2023-08-21T15:04:24.344871427Z",
"updated_at": "2023-08-21T15:13:47.787592127Z",
"metadata": {
"other_id": "other_id_01"

},
"profile": {
"name": "Test User01",
"family_name": "User01",
"email": "test01@example.test"

}
}

8.2.14 GET /v1/tenants/:tenant_id/users/:user_id/credentials

Request:

curl \
https://api.vaultvision.com/v1/tenants/CmKJPDorO34hGJ0J/users/9cb0Q44OoPO4/credentials␣

→˓\
-X GET \
-H "accept: application/json" \
-H "authorization: Bearer $VV_API_KEY"

Response:

{
"type": "List",
"total": 1,
"count": 1,
"limit": 100,
"data": [

{
"type": "PasswordCredential",
"id": "password",
"created_at": "2023-08-21T16:30:26.641417117Z",
"updated_at": "2023-08-21T16:30:35.576230491Z",
"password": {
"alg": "bcrypt",
"cost": 10,
"hash":

→˓"JDJhJDEwJFA1NFEzSzIxYlZtUjFVcVYwbm1VSS5KYnV0cUVJMzVnQ29kUjRyQlRtdUtyN0JVVklCUkZL"
}

}
]

}

8.2. Paths 43

Vault Vision Documentation, Release 1.1

8.2.15 POST /v1/tenants/:tenant_id/users/:user_id/credentials

Create a new user credential. Only password credentials may be created in this way but we may add more credential
types in the future.

Below is an example of creating a credential using a plain text password:

Request:

echo '{
"type": "PasswordCredential",
"password": {
"alg": "plain",
"hash": "1234567890"

}
}' | curl \

https://api.vaultvision.com/v1/tenants/CmKJPDorO34hGJ0J/users/6fkflQib1ehm/
→˓credentials \

-X POST \
-H "accept: application/json" \
-H "authorization: Bearer $VV_API_KEY" \
-d@-

Response:

{
"type": "PasswordCredential",
"id": "password",
"created_at": "2023-08-22T17:37:44.374457721Z",
"updated_at": "2023-08-22T17:37:44.374457721Z",
"password": {
"alg": "bcrypt",
"hash": "$2a$10$lcDfETaxcazpR47RCTBNvurpDi3ouniK5wXDNBK/eZgRE.nJYAlqa"

}
}

Note: The password credential always has the ID of password. Only one password credential can exist at a time.

When importing from an existing system it might be necessary to use the systems existing password hash functions.
The following types of hashes may be specified in the alg field when creating a password credential:

• bcrypt

• plain

• md5

• sha1

• sha256

• sha512

When bcrypt is specified the cost of the supplied hash must be within a tolerance of our current standard bcrypt cost
of 10 or an error will be returned. If it is not identical to our current standard cost the first time a user logs in the hash
will be upgraded to our standard cost factor.

44 Chapter 8. API Reference - Vault Vision

Vault Vision Documentation, Release 1.1

When md5, sha1, sha256, sha512 are specified the given hash will be wrapped in the form of $ALG|bcrypt, i.e.
md5|bcrypt .. sha512|bcrypt. This tells our authentication system to first hash the users supplied password with
$ALG before comparing it with bcrypt. If the login is successful the stored hash will be updated and the double hashing
removed, e.g. $ALG|bcrypt -> first login -> bcrypt.

We can see this in action by running the following test. If you already have a hash, you can skip ahead to the request.
Otherwise you can get a hash with the following commands found in most linux distros:

echo -n "1234567890" | md5sum | awk '{print $1}'
> e807f1fcf82d132f9bb018ca6738a19f
echo -n "1234567890" | sha1sum | awk '{print $1}'
> 01b307acba4f54f55aafc33bb06bbbf6ca803e9a
echo -n "1234567890" | sha256sum | awk '{print $1}'
> c775e7b757ede630cd0aa1113bd102661ab38829ca52a6422ab782862f268646
echo -n "1234567890" | sha512sum | awk '{print $1}'
>␣
→˓12b03226a6d8be9c6e8cd5e55dc6c7920caaa39df14aab92d5e3ea9340d1c8a4d3d0b8e4314f1f6ef131ba4bf1ceb9186ab87c801af0d5c95b1befb8cedae2b9

Request:

echo '{
"type": "PasswordCredential",
"password": {
"alg": "sha256",
"hash": "c775e7b757ede630cd0aa1113bd102661ab38829ca52a6422ab782862f268646"

}
}' | curl \

https://api.vaultvision.com/v1/tenants/CmKJPDorO34hGJ0J/users/6fkflQib1ehm/
→˓credentials \

-X POST \
-H "accept: application/json" \
-H "authorization: Bearer $VV_API_KEY" \
-d@-

Response:

{
"type": "PasswordCredential",
"id": "password",
"created_at": "2023-08-22T17:48:47.26937881Z",
"updated_at": "2023-08-22T17:48:47.26937881Z",
"password": {
"alg": "sha256|bcrypt",
"hash": "$2a$10$j00eE6DTimtrqB9JlI.8AOW2f5RnCL/6D4y3OmCED4sIZiF6Y8U3S"

}
}

You can see the alg is currently sha256|bcrypt. Now let’s login to our test user so the credential can be updated to
bcrypt and get the latest credential:

Request:

curl \
https://api.vaultvision.com/v1/tenants/CmKJPDorO34hGJ0J/users/6fkflQib1ehm/credentials/

→˓password \
(continues on next page)

8.2. Paths 45

Vault Vision Documentation, Release 1.1

(continued from previous page)

-X GET \
-H "accept: application/json" \
-H "authorization: Bearer $VV_API_KEY"

Response:

{
"type": "PasswordCredential",
"id": "password",
"created_at": "2023-08-22T17:48:47.26937881Z",
"updated_at": "2023-08-22T17:49:09.616763917Z",
"password": {
"alg": "bcrypt",
"hash": "$2a$10$ocmiG9heGDB0AkLWn3XeyuXpaptESluust78Yx6vODARemPJQNqYK"

}
}

8.2.16 GET /v1/tenants/:tenant_id/users/:user_id/credentials/:credential_id

Request:

curl \
https://api.vaultvision.com/v1/tenants/CmKJPDorO34hGJ0J/users/6fkflQib1ehm/credentials/

→˓password \
-X GET \
-H "accept: application/json" \
-H "authorization: Bearer $VV_API_KEY"

Response:

{
"type": "PasswordCredential",
"id": "password",
"created_at": "2023-08-22T17:48:47.26937881Z",
"updated_at": "2023-08-22T17:49:09.616763917Z",
"password": {
"alg": "bcrypt",
"hash": "$2a$10$ocmiG9heGDB0AkLWn3XeyuXpaptESluust78Yx6vODARemPJQNqYK"

}
}

8.2.17 POST /v1/tenants/:tenant_id/users/:user_id/credentials/:credential_id

Update a users credential. All credential types may be disabled/enabled and have the metadata updated, but only
passowrds allow other fields to be modified.

Below is an example of how to disable the users password:

Request:

46 Chapter 8. API Reference - Vault Vision

Vault Vision Documentation, Release 1.1

curl \
https://api.vaultvision.com/v1/tenants/CmKJPDorO34hGJ0J/users/6fkflQib1ehm/credentials/

→˓password \
-X GET \
-H "accept: application/json" \
-H "authorization: Bearer $VV_API_KEY" \

| jq -r '. += {"disabled": true}' \
| curl \

https://api.vaultvision.com/v1/tenants/CmKJPDorO34hGJ0J/users/6fkflQib1ehm/
→˓credentials/password \

-X POST \
-H "accept: application/json" \
-H "authorization: Bearer $VV_API_KEY" \
-d@-

Response:

{
"type": "PasswordCredential",
"id": "password",
"created_at": "2023-08-22T17:48:47.26937881Z",
"updated_at": "2023-08-22T17:55:25.626537952Z",
"disabled": true,
"password": {
"alg": "bcrypt",
"hash": "$2a$10$ocmiG9heGDB0AkLWn3XeyuXpaptESluust78Yx6vODARemPJQNqYK"

}
}

8.2.18 DELETE /v1/tenants/:tenant_id/users/:user_id/credentials/:credential_id

Delete will remove the credential for the given user, if it is their last remaining credential they will no longer be able to
login.

Note: The user can still perform a password reset to gain access to their account, set the user to “disabled” if you want
to block future logins. See Example - Disable a user.

Request:

curl \
https://api.vaultvision.com/v1/tenants/CmKJPDorO34hGJ0J/users/6fkflQib1ehm/credentials/

→˓password \
-X DELETE \
-H "accept: application/json" \
-H "authorization: Bearer $VV_API_KEY"

Response:

{
"type": "PasswordCredential",
"id": "password",

(continues on next page)

8.2. Paths 47

Vault Vision Documentation, Release 1.1

(continued from previous page)

"created_at": "2023-08-22T17:48:47.26937881Z",
"updated_at": "2023-08-22T17:55:25.626537952Z",
"disabled": true,
"password": {
"alg": "bcrypt",
"hash": "$2a$10$ocmiG9heGDB0AkLWn3XeyuXpaptESluust78Yx6vODARemPJQNqYK"

}
}

8.3 Examples

Below are some simple runnable examples using curl along side jq.

jq is a command-line JSON processor that we will use in these examples as an easy way to take the JSON outputs from
API calls make a minor modification and then pass that modified JSON as input into the next API call. Because udpates
to objects require ALL the fields of an object, even the fields that aren’t changing, you will see the jq library used in
this specific pattern is used to make updating a single field as easy possible. Simply put, in order to make updates, you
need to first do a GET of an object to fetch all its fields, then modify the fields you wish to change and POST the entire
modified object back to the API. The jq library is an easy way to do this JSON modification on the command-line. If
you are using a language like javascript or python, you can perform this pattern without the use of jq. jq is used in these
examples because they are command-line examples.

Note: All the example data here was randomly generated for this documentation. Everything from the application
secrets to the object ID’s have never actually existed. You must replace them with your own data for the requests to
work.

8.3.1 Example - Changing a Tenant Setting (JQ)

Here’s a simple one liner to change the “allow_unverified” field to false using jq and curl. This works by sending a
GET to fetch the tenant object, editing the response inline, and posting it directly back to the API.

curl \
https://api.vaultvision.com/v1/tenants/CmKJPDorO34hGJ0J \
-X GET \
-H "accept: application/json" \
-H "authorization: Bearer $VV_API_KEY" \

| jq -r '.settings.allow_unverified = false' \
| curl \

https://api.vaultvision.com/v1/tenants/CmKJPDorO34hGJ0J \
-X POST \
-H "accept: application/json" \
-H "authorization: Bearer $VV_API_KEY" \
-d@-

Note: When allow_unverified is false users that haven’t verified their email address are redirected to the email verifi-
cation workflow, which must be completed before they are able to login.

48 Chapter 8. API Reference - Vault Vision

https://jqlang.github.io/jq/

Vault Vision Documentation, Release 1.1

8.3.2 Example - Changing a Tenant Setting (Manual)

Here’s a step by step example of how to change the “allow_unverified” field to false.

First lets get the latest version of our tenant:

curl \
https://api.vaultvision.com/v1/tenants/CmKJPDorO34hGJ0J \
-X GET \
-H "accept: application/json" \
-H "authorization: Bearer $VV_API_KEY"

Our result:

{
"type": "Tenant",
"id": "CmKJPDorO34hGJ0J",
"name": "acme01",
"created_at": "2023-08-18T15:11:28.708085985Z",
"updated_at": "2023-08-18T21:58:05.547823288Z",
"settings": {
"domain": "acme01.vvkey.test",
"company_name": "acme01",
"support_email": "support@acme01.test",
"allow_social": true,
"allow_hardware": true,
"allow_passwords": true,
"allow_totp_app": true,
"allow_totp_email": true,
"allow_unverified": true,
"remember_device": true,
"remember_device_seconds": 2592000,
"remember_login_seconds": 2592000,
"allow_signups": true

}
}

Now put these settings in a file and edit them by hand. One option is we can use bash to quickly create a
tenant-update.json file.

echo '{
"type": "Tenant",
"id": "CmKJPDorO34hGJ0J",
"name": "acme01",
"created_at": "2023-08-18T15:11:28.708085985Z",
"updated_at": "2023-08-18T21:58:05.547823288Z",
"settings": {
"domain": "acme01.vvkey.test",
"company_name": "acme01",
"support_email": "support@acme01.test",
"allow_social": true,
"allow_hardware": true,
"allow_passwords": true,
"allow_totp_app": true,

(continues on next page)

8.3. Examples 49

Vault Vision Documentation, Release 1.1

(continued from previous page)

"allow_totp_email": true,
"allow_unverified": false,
"remember_device": true,
"remember_device_seconds": 2592000,
"remember_login_seconds": 2592000,
"allow_signups": true

}
}' > tenant-update.json

Send the updated settings to the API:

curl \
https://api.vaultvision.com/v1/tenants/CmKJPDorO34hGJ0J \
-X POST \
-H "accept: application/json" \
-H "authorization: Bearer $VV_API_KEY" \
-d@tenant-update.json

The response should show allow_unverified setting is now set to false as well as the updated_at field will reflect the
time of the change.

{
"type": "Tenant",
"id": "CmKJPDorO34hGJ0J",
"name": "acme01",
"created_at": "2023-08-18T15:11:28.708085985Z",
"updated_at": "2023-08-18T21:58:15.547823288Z",
"settings": {
"domain": "acme01.vvkey.test",
"company_name": "acme01",
"support_email": "support@acme01.test",
"allow_social": true,
"allow_hardware": true,
"allow_passwords": true,
"allow_totp_app": true,
"allow_totp_email": true,
"allow_unverified": false,
"remember_device": true,
"remember_device_seconds": 2592000,
"remember_login_seconds": 2592000,
"allow_signups": true

}
}

50 Chapter 8. API Reference - Vault Vision

Vault Vision Documentation, Release 1.1

8.3.3 Example - Metadata

Here’s an example of how to add metadata using curl:

curl \
https://api.vaultvision.com/v1/tenants/CmKJPDorO34hGJ0J \
-X GET \
-H "accept: application/json" \
-H "authorization: Bearer $VV_API_KEY" \

| jq -r '. += {"metadata": {"mykey1":"myval1"}}' \
| curl \

https://api.vaultvision.com/v1/tenants/CmKJPDorO34hGJ0J \
-X POST \
-H "accept: application/json" \
-H "authorization: Bearer $VV_API_KEY" \
-d@-

8.3.4 Example - Disable a user

Disabling a user blocks them from logging in.

Request:

curl \
https://api.vaultvision.com/v1/tenants/CmKJPDorO34hGJ0J/users/9cb0Q44OoPO4 \
-X GET \
-H "accept: application/json" \
-H "authorization: Bearer $VV_API_KEY" \

| jq -r '. += {"disabled": true}' \
| curl \

https://api.vaultvision.com/v1/tenants/CmKJPDorO34hGJ0J/users/9cb0Q44OoPO4 \
-X POST \
-H "accept: application/json" \
-H "authorization: Bearer $VV_API_KEY" \
-d@-

Response:

{
"type": "User",
"id": "9cb0Q44OoPO4",
"created_at": "2023-08-21T15:04:24.344871427Z",
"updated_at": "2023-08-21T15:38:10.606366075Z",
"metadata": {
"other_id": "other_id_01"

},
"disabled": true,
"verified_at": "2023-08-21T15:06:43.49365588Z",
"profile": {
"name": "Test User01",
"family_name": "User01",
"email": "test01@example.test",
"email_verified": true

(continues on next page)

8.3. Examples 51

Vault Vision Documentation, Release 1.1

(continued from previous page)

}
}

8.3.5 Example - Enable a user

Enable a user that was previously disabled.

Request:

curl \
https://api.vaultvision.com/v1/tenants/CmKJPDorO34hGJ0J/users/9cb0Q44OoPO4 \
-X GET \
-H "accept: application/json" \
-H "authorization: Bearer $VV_API_KEY" \

| jq -r '. += {"disabled": false}' \
| curl \

https://api.vaultvision.com/v1/tenants/CmKJPDorO34hGJ0J/users/9cb0Q44OoPO4 \
-X POST \
-H "accept: application/json" \
-H "authorization: Bearer $VV_API_KEY" \
-d@-

Response:

{
"type": "User",
"id": "9cb0Q44OoPO4",
"created_at": "2023-08-21T15:04:24.344871427Z",
"updated_at": "2023-08-21T15:38:53.495536342Z",
"metadata": {
"other_id": "other_id_01"

},
"verified_at": "2023-08-21T15:06:43.49365588Z",
"profile": {
"name": "Test User01",
"family_name": "User01",
"email": "test01@example.test",
"email_verified": true

}
}

52 Chapter 8. API Reference - Vault Vision

CHAPTER

NINE

API KEYS - VAULT VISION

API Keys grant access to Vault Vision’s API . You may create and manage API Keys in the management console and
begin making requests to the public API at https://api.vaultvision.com.

9.1 Overview

First remember that your API Keys are a secret and must be kept secure, do not share your secret API keys in publicly
accessible areas. To help identify them we give all API Keys a common prefix of "vv_". Beyond that all characters
are random, some examples of what your secret API Keys look like:

• vv_oFVTAiPkICpOewyuV2mINX1rSFxzdIkR

• vv_uAmkBd4nRsjFPBfsJFrmvNmKOMARrapZ

Once you have an API Key you are ready to begin using the API. For more information about how to use them see the
API Overview.

9.1.1 Privileges

API Keys gain privileges by allowing permissions on resources. By default they apply globally to all resources
within all current tenants and any tenants created in the future. However toggling the Restricted button allows you to
restrict access to only specific tenants instead.

The API has the following types of resources:

• All (matches all resources)

• Tenants

• Applications

• Metrics

• Users

• Credentials

• Identity Providers

• Email Providers

• Signing Keys

Each resource may have one of the following permissions:

• None

53

https://vaultvision.com
https://manage.vaultvision.com/apikeys

Vault Vision Documentation, Release 1.1

• Read

• Write (Read / Write)

9.2 Guide - Creating Global API Keys

This guide will walk you through creating your first secret API Key.

9.2.1 Step 1 - Login to Management Console

Navigate to the management console at management console. After logging in you will see a list of your current API
Keys (if you have created any).

54 Chapter 9. API Keys - Vault Vision

https://manage.vaultvision.com/apikeys

Vault Vision Documentation, Release 1.1

9.2. Guide - Creating Global API Keys 55

Vault Vision Documentation, Release 1.1

9.2.2 Step 2 - Create API Key

Click the + New button to open the Create API Key dialog. Once you selected a name for this key (used strictly for
your own identification in the UI) click “Create”.

56 Chapter 9. API Keys - Vault Vision

Vault Vision Documentation, Release 1.1

9.2. Guide - Creating Global API Keys 57

Vault Vision Documentation, Release 1.1

9.2.3 Step 3 - Review Settings

After creating your key you will be taken to the keys settings. Here you may select your key options for your new secret
Global API Key. Below is an example of allowing read only access to all tenants.

Note: The privileges you grant Global API Keys apply to all of your current tenants and any tenant you create in the
future.

58 Chapter 9. API Keys - Vault Vision

Vault Vision Documentation, Release 1.1

9.2. Guide - Creating Global API Keys 59

Vault Vision Documentation, Release 1.1

You may also grant global access to specific resources. For example to only allow access to READ ALL current
(and future) Tenant Settings, READ only for your User resources and WRITE access to credentials you would do
something like below:

60 Chapter 9. API Keys - Vault Vision

Vault Vision Documentation, Release 1.1

9.2. Guide - Creating Global API Keys 61

Vault Vision Documentation, Release 1.1

9.2.4 Step 4 - Restrict Privileges (OPTIONAL)

If you want to restrict access to one or more specific tenants you may toggle the Restricted option. Now you may assign
the same resource specific access controls to specific tenants. For example to only allow access to READ your sandbox
(dev-xxxx prefixed) Tenant Settings and WRITE to your User resources you would do something like below:

62 Chapter 9. API Keys - Vault Vision

Vault Vision Documentation, Release 1.1

9.2. Guide - Creating Global API Keys 63

Vault Vision Documentation, Release 1.1

64 Chapter 9. API Keys - Vault Vision

CHAPTER

TEN

CUSTOM DOMAINS - VAULT VISION

Note: CNAME for your custom domain You may use a custom domain for your Vault Vision tenant, this requires a
cname pointing to nextgenauth.vaultvision.com.

10.1 Step 1

Go to the Start page in the Vault Vision Management Panel and enter your custom domain.

10.2 Step 2

Add a cname using your dns provider to point to nextgenauth.vaultvision.com.

10.3 Step 3

Wait for the cname to become active, once DNS resolves we will automatically issue a TLS certificate for your custom
domain.

65

https://manage.vaultvision.com/start
https://vaultvision.com

Vault Vision Documentation, Release 1.1

66 Chapter 10. Custom Domains - Vault Vision

CHAPTER

ELEVEN

IDENTITY PROVIDERS - VAULT VISION

11.1 What is an Identity Provider?

An identity provider (aka an IdP) is a service that manages and provides user identity through some method of user
authentication. IdPs are registered third party accounts (Google, Microsoft and Apple) that the user can use to prove
their identity. The Idp becomes the central hub for that user to access other systems that know how to integrate with that
IdP. Online services like Google, Microsoft and Apple maintain an available IdP for their users. This means as a user of
their service, you can authenticate to other 3rd party systems using Microsoft, Google and Apple account credentials.
This can be convenient because the user can now use your application or service without having to complete another
account registration process, they can attach their Google or Microsoft account to your application or service. Vault
Vision’s platform has developed these integrations with Google, Microsoft and Apple to save you and users time. See
below for steps on how to add IdP functionality to your Vault Vision account.

11.2 Options

1. You can use the default Vault Vision applications at both Google and Microsoft. This␣
→˓will show the 'Vault Vision' brand as your users register their account with your␣
→˓application or service.

Or

2. You can create your own custom applications at Google and Microsoft and link them to␣
→˓the Vault Vision platform

11.3 How to register as an application with Google

1. Create a Google Cloud Account You must have a Google login, if you don’t you can create one here:
(https://accounts.google.com/)[https://accounts.google.com/]

2. In a browser, navigate to the Google Cloud Platform management console
(https://console.cloud.google.com)[https://console.cloud.google.com]

3. In the right hand nav menu click APIs and Services > Credentials

67

https://vaultvision.com

Vault Vision Documentation, Release 1.1

4. Now create a ‘project’, this is the core entity that will house your settings and give you a client id and
client secret. We will call ours ‘Vault Vision Project’. ‘No organization’ will be just fine as a location

68 Chapter 11. Identity Providers - Vault Vision

Vault Vision Documentation, Release 1.1

11.3. How to register as an application with Google 69

Vault Vision Documentation, Release 1.1

70 Chapter 11. Identity Providers - Vault Vision

Vault Vision Documentation, Release 1.1

5. Now ‘Configure Consent Screen’

11.3. How to register as an application with Google 71

Vault Vision Documentation, Release 1.1

6. Set the User Type to ‘External’

7. Edit App Registration: You will need to set the following fields:

• App name

• User support email

• App logo

• Authorized domains (You will need the (Google Search Console for
this)[https://support.google.com/webmasters/answer/9008080?hl=en&ref_topic=9455938])

• Application home page

• Application privacy policy link

• Application terms of service link

• Developer contact information

72 Chapter 11. Identity Providers - Vault Vision

Vault Vision Documentation, Release 1.1

8. Add the scopes needed for authentication and to get user profile data and email address

11.3. How to register as an application with Google 73

Vault Vision Documentation, Release 1.1

Select the following scopes

• ./auth/userinfo.email

• ./auth/userinfo.profile

74 Chapter 11. Identity Providers - Vault Vision

Vault Vision Documentation, Release 1.1

• openid

9. Add any test users you want to allow to test the integration with, these need to be real Google accounts

11.3. How to register as an application with Google 75

Vault Vision Documentation, Release 1.1

10. Return to the dashboard for the ‘OAuth consent screen’ and ‘Publish App’

76 Chapter 11. Identity Providers - Vault Vision

Vault Vision Documentation, Release 1.1

11. Navigate to Credentials menu in the right hand nav and click ‘Create Creden-
tials’ then ‘OAuth client ID’ to create your OAuth 2.0 Client ID and secret

11.3. How to register as an application with Google 77

Vault Vision Documentation, Release 1.1

78 Chapter 11. Identity Providers - Vault Vision

Vault Vision Documentation, Release 1.1

12. Select an ‘Application Type’

13. Populate the Javascript Origins and Authorized redirect URIs

Set the Authorized JavaScript origins to the domain you used on your tenant, you can find that here at the top of the
screen: (Vault Vision Management Panel)[https://manage.vaultvision.com/go#applications]

Set Authorized redirect URIs to exactly the below: https://callback.vvkey.io/oidc/callback

11.3. How to register as an application with Google 79

Vault Vision Documentation, Release 1.1

In order for Google to allow you to interact with their Google user accounts, you will need to use your - ability to have
and handle 2 incoming routes open to the internet over port 443 - ability to perform 302 redirects - ability to set and
store 4 server-side variables (client_id, client_secret, base_url, your_callback_url). Most of the time these are stored
as an environment or configuration variable. - (optional) ability to maintain a session, this needed assuming you want
users to only authenticate once and be in some kind of logged in state. This could be a cookie, session server, or session
specific cache. - (optional in the case of using a custom domain) ability to set a DNS CNAME for your custom domain
that points to nextgenauth.vaultvision.com

80 Chapter 11. Identity Providers - Vault Vision

CHAPTER

TWELVE

CUSTOM BRANDING DESIGNER - VAULT VISION

12.1 With our custom branding designer you will be able to set a cus-
tom image for your authentication pages

These are the available pages that you can customize

• Login

• Signup

• Forgot/Reset Password

• Verify Account (This is also the one used in the MFA/2FA verification flow)

81

Vault Vision Documentation, Release 1.1

12.1.1 Custom Image Example

See the below image and the area highlighted in red, this is the image that can be customized

12.2 Image requirements

The custom image should be:

• under 1MB

• .JPG or .PNG

• ideal dimension are 1080x1920, but the image is designed to scale to fit the area no matter what the browser
viewport size is.

82 Chapter 12. Custom Branding Designer - Vault Vision

Vault Vision Documentation, Release 1.1

12.3 Custom Branding Designer Management Page

Update the URL values in the Vault Vision Management Panel for your designer.

12.3. Custom Branding Designer Management Page 83

https://manage.vaultvision.com/go#branding

Vault Vision Documentation, Release 1.1

84 Chapter 12. Custom Branding Designer - Vault Vision

CHAPTER

THIRTEEN

NOCODE HTML AND JS AIRTABLE TOOLKIT - VAULT VISION

13.1 With our NoCode HTML and JS Toolkit you will be

These are the available pages that you can customize

• Login

• Signup

• Forgot/Reset Password

• Verify Account (This is also the one used in the MFA/2FA verification flow)

85

Vault Vision Documentation, Release 1.1

86 Chapter 13. NoCode HTML and JS AirTable Toolkit - Vault Vision

CHAPTER

FOURTEEN

ID TOKENS, ACCESS TOKENS, USERINFO - VAULT VISION

14.1 ID Tokens

An ID token is the result of a successful authenication sequence, it represents the assertion that the user represented
by the identity enclosed inside the ID token has successful authenticated with a proper and valid credential. During an
OAuth flow, the OAuth client application will receive this ID token as part of a payload in a callback that occurs after
the user has been authenticated. Usually, the client application will then validate and decode this ID token and use
the information contained in the token to establish a new user session in the client application for this newly validated
and authenticated user. ID tokens are designed to be short lived and should NOT be re-used as a session token. Best
practice is to create a new session JWT that you store in an HTTPOnly, SameSite, secure cookie (not in local storage,
not in an unsecure cookie, and not in a javascript readable cookie; these locations are insecure and can be used it XSS
attacks to steal a user’s session).

Formal definition from Open ID - ID token

The primary extension that OpenID Connect makes to OAuth 2.0 to enable End-Users to be Authenticated
is the ID Token data structure. The ID Token is a security token that contains Claims about the Authen-
tication of an End-User by an Authorization Server when using a Client, and potentially other requested
Claims. The ID Token is represented as a JSON Web Token (JWT) [JWT].

Note: Great tool for decoding and inspecting signed JWTs

• JWT Decoder, Verifier, Generator, Decryptor

14.1.1 ID Token Example

See the below for the contents of the payload of an actual decoded JWT ID token issued by the Vault Vision authenti-
cation flow:

{
iss: 'https://auth.vaultvision.com',
sub: 'osjm55CZtYkr',
aud: ['client-id'],
exp: 1684517823,
iat: 1684514223,
auth_time: 1684513456,
nonce: 'NQjSh-MmMHi0kqyK9ZV6TA8o73jsKMvt2c-caMx2c1Q'

}

87

https://openid.net/specs/openid-connect-core-1_0.html#IDToken
https://openid.net/specs/openid-connect-core-1_0.html#JWT
https://dinochiesa.github.io/jwt/

Vault Vision Documentation, Release 1.1

This token asserts that the user (sub) with id of ‘osjm55CZtYkr’ successfully authenicated at: 1684513456 (Friday,
May 19, 2023 4:24:16 PM)

Notice that the ‘exp’ (expire time) and ‘iat’ (issued at time) are 3600 apart, this is because the id tokens issued by Vault
Vision are valid for 1 hour. NOTE: this expire time is just a sanity lifetime for the JWT itself and has nothing to do
with the duration of the a user’s login session. It is just a simple expiry value to limit the time a token is considered
valid. Even though a token is valid for 1 hour, actual user sessions lifetimes are configurable and can be configured for
as little as 1 second or until the browser closes. Do not use this ID token ‘exp’ time as a user session expiration time.

Note: Great tool for decoding and inspecting signed JWTs

• JWT Decoder, Verifier, Generator, Decryptor

• iss

– REQUIRED. Issuer Identifier for the Issuer of the response. The iss value is a case sensitive URL using the
https scheme that contains scheme, host, and optionally, port number and path components and no query
or fragment components.

• sub

– REQUIRED. Subject Identifier. A locally unique and never reassigned identifier within the Is-
suer for the End-User, which is intended to be consumed by the Client, e.g., 24400320 or
AItOawmwtWwcT0k51BayewNvutrJUqsvl6qs7A4. It MUST NOT exceed 255 ASCII characters in length.
The sub value is a case sensitive string.

• aud

– REQUIRED. Audience(s) that this ID Token is intended for. It MUST contain the OAuth 2.0 client_id of
the Relying Party as an audience value. It MAY also contain identifiers for other audiences. In the general
case, the aud value is an array of case sensitive strings. In the common special case when there is one
audience, the aud value MAY be a single case sensitive string.

• exp

– REQUIRED. Expiration time on or after which the ID Token MUST NOT be accepted for processing. The
processing of this parameter requires that the current date/time MUST be before the expiration date/time
listed in the value. Implementers MAY provide for some small leeway, usually no more than a few minutes,
to account for clock skew. Its value is a JSON number representing the number of seconds from 1970-
01-01T0:0:0Z as measured in UTC until the date/time. See RFC3339 for details regarding date/times in
general and UTC in particular.

• iat

– REQUIRED. Time at which the JWT was issued. Its value is a JSON number representing the number of
seconds from 1970-01-01T0:0:0Z as measured in UTC until the date/time.

• auth_time

– Time when the End-User authentication occurred. Its value is a JSON number representing the number
of seconds from 1970-01-01T0:0:0Z as measured in UTC until the date/time. When a max_age request
is made or when auth_time is requested as an Essential Claim, then this Claim is REQUIRED; otherwise,
its inclusion is OPTIONAL. (The auth_time Claim semantically corresponds to the OpenID 2.0 PAPE
[OpenID.PAPE] auth_time response parameter.)

• nonce

– String value used to associate a Client session with an ID Token, and to mitigate replay attacks. The value
is passed through unmodified from the Authentication Request to the ID Token. If present in the ID Token,
Clients MUST verify that the nonce Claim Value is equal to the value of the nonce parameter sent in the

88 Chapter 14. ID Tokens, Access Tokens, UserInfo - Vault Vision

https://dinochiesa.github.io/jwt/
https://www.rfc-editor.org/rfc/rfc3339

Vault Vision Documentation, Release 1.1

Authentication Request. If present in the Authentication Request, Authorization Servers MUST include a
nonce Claim in the ID Token with the Claim Value being the nonce value sent in the Authentication Request.
Authorization Servers SHOULD perform no other processing on nonce values used. The nonce value is a
case sensitive string.

14.2 Access Tokens

Access tokens are the tokens used to make authenticated requests to resource API endpoints. Resource servers use
these access tokens to validate that the request is authentic and which types of claims to resources are being requested.

Formal definition from RFC 6749

Access tokens are credentials used to access protected resources. An access token is a string representing
an authorization issued to the client. The string is usually opaque to the client. Tokens represent specific
scopes and durations of access, granted by the resource owner, and enforced by the resource server and
authorization server.

There are 3 specific points regarding access tokens that are key to the security model of OAuth:

• Access tokens must not be read or interpreted by the OAuth client. The OAuth client is not the intended audience
of the token, the resource server is the intended audience for the access token.

• Access tokens do not convey user identity or any other information about the user to the OAuth client, ID tokens
are used for that puprose.

• Access tokens should only be used to make requests to the resource server. Additionally, ID tokens must not be
used to make requests to the resource server.

In a typical authentication flow, both an access token and an ID token are returned to the OAuth client in the auth
callback as part of a token set. For the Vault Vision auth platform, the access token provided can be used to make a
call into our ‘userinfo_endpoint’ to retrieve information about the user.

14.2.1 Access Token Example

No example is listed because these are specific to the resource API that consumes them. They should be treated as
opaque by the OAuth client, and are a pass-through to that API. They should not be inspected or modified by the OAuth
client. For the Vault Vision case, we issue the access token so that it can be used used in calls to our ‘userinfo’ endpoint.
New access tokens can be regenerated by going through another authentication flow.

14.3 UserInfo

With a proper access token, a call can be made to our ‘userinfo_endpoint’ to retrieve a payload of information about
the current authenticated user.

The response will contain a JSON object with details about the user, specified by the OpenID Connect Core spec

14.2. Access Tokens 89

https://datatracker.ietf.org/doc/html/rfc6749#section-1.4
https://openid.net/specs/openid-connect-core-1_0.html#UserInfoResponse

Vault Vision Documentation, Release 1.1

14.3.1 UserInfo Example

See below for a UserInfo JSON response example from the Vault Vision authentication userinfo endpoint:

{
email: 'john@smith.com',
email_verified: true,
family_name: 'Smith',
given_name: 'John',
iss: 'https://auth.vaultvision.com',
locale: 'en',
name: 'John Smith',
picture: 'https://lh3.googleusercontent.com/a/BeSWzMFuxbDk',
sub: 'gtrbTuREykUH'

}

90 Chapter 14. ID Tokens, Access Tokens, UserInfo - Vault Vision

	Quick Start - Vault Vision
	Create an Account at Vault Vision
	Try out your development sandbox
	Run your own example application locally
	Get your configuration values
	Run the Go auth example
	Run the Node auth example
	Run the Python auth example
	Run the React js boilerplate example
	Run the HTML boilerplate example

	Testing your local example

	Tenants - Vault Vision
	Properties
	Actions

	Applications - Vault Vision
	Properties
	Actions

	Users - Vault Vision
	Properties
	Actions

	User Authentication Concepts - Vault Vision
	Typical OIDC Application to Authentication Provider Flow Strategy and Diagrams
	Login Flow Diagram

	Step 1
	Step 2

	Reference - Vault Vision
	Typical OIDC Application to User Auth Provider Flow Diagrams
	Step 1
	Step 2

	Express Migration Steps - Vault Vision
	Step 1
	Step 2 - Create an Account at Vault Vision
	Step 3 - Update the application to use the determined URLs
	Step 4 add the OIDC open source client library
	Step 5 copy the environment variables
	Step 6 create a OIDC client using the open source library
	Step 7 create a login route
	Step 8 create a logout route
	Step 9 create a callback route
	Step 10 import users, and assign a new forigen key
	Step 11 update any session creation and tear down

	API Reference - Vault Vision
	Overview
	Authentication
	Metadata
	Errors
	Update/Create Conventions

	Paths
	GET /v1/tenants
	GET /v1/tenants/:tenant_id
	POST /v1/tenants/:tenant_id
	POST /v1/tenants/:tenant_id/applications
	GET /v1/tenants/:tenant_id/applications
	GET /v1/tenants/:tenant_id/applications/:application_id
	POST /v1/tenants/:tenant_id/applications/:application_id
	DELETE /v1/tenants/:tenant_id/applications/:application_id
	POST /v1/tenants/:tenant_id/users
	GET /v1/tenants/:tenant_id/users
	GET /v1/tenants/:tenant_id/users/:user_id
	POST /v1/tenants/:tenant_id/users/:user_id
	DELETE /v1/tenants/:tenant_id/users/:user_id
	GET /v1/tenants/:tenant_id/users/:user_id/credentials
	POST /v1/tenants/:tenant_id/users/:user_id/credentials
	GET /v1/tenants/:tenant_id/users/:user_id/credentials/:credential_id
	POST /v1/tenants/:tenant_id/users/:user_id/credentials/:credential_id
	DELETE /v1/tenants/:tenant_id/users/:user_id/credentials/:credential_id

	Examples
	Example - Changing a Tenant Setting (JQ)
	Example - Changing a Tenant Setting (Manual)
	Example - Metadata
	Example - Disable a user
	Example - Enable a user

	API Keys - Vault Vision
	Overview
	Privileges

	Guide - Creating Global API Keys
	Step 1 - Login to Management Console
	Step 2 - Create API Key
	Step 3 - Review Settings
	Step 4 - Restrict Privileges (OPTIONAL)

	Custom Domains - Vault Vision
	Step 1
	Step 2
	Step 3

	Identity Providers - Vault Vision
	What is an Identity Provider?
	Options
	How to register as an application with Google

	Custom Branding Designer - Vault Vision
	With our custom branding designer you will be able to set a custom image for your authentication pages
	Custom Image Example

	Image requirements
	Custom Branding Designer Management Page

	NoCode HTML and JS AirTable Toolkit - Vault Vision
	With our NoCode HTML and JS Toolkit you will be

	ID Tokens, Access Tokens, UserInfo - Vault Vision
	ID Tokens
	ID Token Example

	Access Tokens
	Access Token Example

	UserInfo
	UserInfo Example

